The Stacks project

Lemma 14.13.3. Let $\mathcal{C}$ be a category such that the coproduct of any two objects of $\mathcal{C}$ exists. Let us temporarily denote $\textit{FSSets}$ the category of simplicial sets all of whose components are finite nonempty.

  1. The rule $(U, V) \mapsto U \times V$ defines a functor $\textit{FSSets} \times \text{Simp}(\mathcal{C}) \to \text{Simp}(\mathcal{C})$.

  2. For every $U$, $V$ as above there is a canonical map of simplicial objects

    \[ U \times V \longrightarrow V \]

    defined by taking the identity on each component of $(U \times V)_ n = \coprod _ u V_ n$.

Proof. Omitted. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 017E. Beware of the difference between the letter 'O' and the digit '0'.