Lemma 14.18.2. Let $U$ be a simplicial set. Then $U$ has a unique splitting with $N(U_ m)$ equal to the set of nondegenerate $m$-simplices.
Proof. From the definition it follows immediately, that if there is a splitting then $N(U_ m)$ has to be the set of nondegenerate simplices. Let $x \in U_ n$. Suppose that there are surjections $\varphi : [n] \to [k]$ and $\psi : [n] \to [l]$ and nondegenerate simplices $y \in U_ k$, $z \in U_ l$ such that $x = U(\varphi )(y)$ and $x = U(\psi )(z)$. Choose a right inverse $\xi : [l] \to [n]$ of $\psi $, i.e., $\psi \circ \xi = \text{id}_{[l]}$. Then $z = U(\xi )(x)$. Hence $z = U(\xi )(x) = U(\varphi \circ \xi )(y)$. Since $z$ is nondegenerate we conclude that $\varphi \circ \xi : [l] \to [k]$ is surjective, and hence $l \geq k$. Similarly $k \geq l$. Hence we see that $\varphi \circ \xi : [l] \to [k]$ has to be the identity map for any choice of right inverse $\xi $ of $\psi $. This easily implies that $\psi = \varphi $. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: