Lemma 14.18.5. Let $U$ be a simplicial abelian group. Then $U$ has a splitting obtained by taking $N(U_0) = U_0$ and for $m \geq 1$ taking
Moreover, this splitting is functorial on the category of simplicial abelian groups.
Lemma 14.18.5. Let $U$ be a simplicial abelian group. Then $U$ has a splitting obtained by taking $N(U_0) = U_0$ and for $m \geq 1$ taking
Moreover, this splitting is functorial on the category of simplicial abelian groups.
Proof. By induction on $n$ we will show that the choice of $N(U_ m)$ in the lemma guarantees that (14.18.1.1) is an isomorphism for $m \leq n$. This is clear for $n = 0$. In the rest of this proof we are going to drop the superscripts from the maps $d_ i$ and $s_ i$ in order to improve readability. We will also repeatedly use the relations from Remark 14.3.3.
First we make a general remark. For $0 \leq i \leq m$ and $z \in U_ m$ we have $d_ i(s_ i(z)) = z$. Hence we can write any $x \in U_{m + 1}$ uniquely as $x = x' + x''$ with $d_ i(x') = 0$ and $x'' \in \mathop{\mathrm{Im}}(s_ i)$ by taking $x' = (x - s_ i(d_ i(x)))$ and $x'' = s_ i(d_ i(x))$. Moreover, the element $z \in U_ m$ such that $x'' = s_ i(z)$ is unique because $s_ i$ is injective.
Here is a procedure for decomposing any $x \in U_{n + 1}$. First, write $x = x_0 + s_0(z_0)$ with $d_0(x_0) = 0$. Next, write $x_0 = x_1 + s_1(z_1)$ with $d_1(x_1) = 0$. Continue like this to get
where $d_ i(x_ i) = 0$ for all $i = n, \ldots , 0$. By our general remark above all of the $x_ i$ and $z_ i$ are determined uniquely by $x$. We claim that $x_ i \in \mathop{\mathrm{Ker}}(d_0) \cap \mathop{\mathrm{Ker}}(d_1) \cap \ldots \cap \mathop{\mathrm{Ker}}(d_ i)$ and $z_ i \in \mathop{\mathrm{Ker}}(d_0) \cap \ldots \cap \mathop{\mathrm{Ker}}(d_{i - 1})$ for $i = n, \ldots , 0$. Here and in the following an empty intersection of kernels indicates the whole space; i.e., the notation $z_0 \in \mathop{\mathrm{Ker}}(d_0) \cap \ldots \cap \mathop{\mathrm{Ker}}(d_{i - 1})$ when $i = 0$ means $z_0 \in U_ n$ with no restriction.
We prove this by ascending induction on $i$. It is clear for $i = 0$ by construction of $x_0$ and $z_0$. Let us prove it for $0 < i \leq n$ assuming the result for $i - 1$. First of all we have $d_ i(x_ i) = 0$ by construction. So pick a $j$ with $0 \leq j < i$. We have $d_ j(x_{i - 1}) = 0$ by induction. Hence
The last equality by the relations of Remark 14.3.3. These relations also imply that $d_{i - 1}(d_ j(x_ i)) = d_ j(d_ i(x_ i)) = 0$ because $d_ i(x_ i)= 0$ by construction. Then the uniqueness in the general remark above shows the equality $0 = x' + x'' = d_ j(x_ i) + s_{i - 1}(d_ j(z_ i))$ can only hold if both terms are zero. We conclude that $d_ j(x_ i) = 0$ and by injectivity of $s_{i - 1}$ we also conclude that $d_ j(z_ i) = 0$. This proves the claim.
The claim implies we can uniquely write
with $x_ n \in N(U_{n + 1})$ and $z_ i \in \mathop{\mathrm{Ker}}(d_0) \cap \ldots \cap \mathop{\mathrm{Ker}}(d_{i - 1})$. We can reformulate this as saying that we have found a direct sum decomposition
with the property that
for $j = 0, \ldots , n$. The result follows from this statement as follows. Each of the $z_ i$ in the expression for $x$ can be written uniquely as
with $z_{i, 0} \in N(U_ n)$ and $z'_{i, j} \in \mathop{\mathrm{Ker}}(d_0) \cap \ldots \cap \mathop{\mathrm{Ker}}(d_{j - 1})$. The first few steps in the decomposition of $z_ i$ are zero because $z_ i$ already is in the kernel of $d_0, \ldots , d_ i$. This in turn uniquely gives
Continuing in this fashion we see that we in the end obtain a decomposition of $x$ as a sum of terms of the form
with $0 \leq i_1 \leq i_2 \leq \ldots \leq i_ k \leq n - k + 1$ and $z \in N(U_{n + 1 - k})$. This is exactly the required decomposition, because any surjective map $[n + 1] \to [n + 1 - k]$ can be uniquely expressed in the form
with $0 \leq i_1 \leq i_2 \leq \ldots \leq i_ k \leq n - k + 1$. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (3)
Comment #8822 by Connor Bass on
Comment #8823 by Connor Bass on
Comment #9268 by Stacks project on
There are also: