Lemma 14.21.2. Let $\mathcal{C}$ be a category. Let $U$ be an $m$-truncated simplicial object of $\mathcal{C}$. For any $n \leq m$ the colimit

exists and is equal to $U_ n$.

Lemma 14.21.2. Let $\mathcal{C}$ be a category. Let $U$ be an $m$-truncated simplicial object of $\mathcal{C}$. For any $n \leq m$ the colimit

\[ \mathop{\mathrm{colim}}\nolimits _{([n]/\Delta )_{\leq m}^{opp}} U(n) \]

exists and is equal to $U_ n$.

**Proof.**
This is so because the category $([n]/\Delta )_{\leq m}$ has an initial object, namely $\text{id} : [n] \to [n]$.
$\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)