Processing math: 100%

The Stacks project

Definition 14.14.1. Let \mathcal{C} be a category with finite products. Let V be a cosimplicial object of \mathcal{C}. Let U be a simplicial set such that each U_ n is finite nonempty. We define \mathop{\mathrm{Hom}}\nolimits (U, V) to be the cosimplicial object of \mathcal{C} defined as follows:

  1. we set \mathop{\mathrm{Hom}}\nolimits (U, V)_ n = \prod _{u \in U_ n} V_ n, in other words the unique object of \mathcal{C} such that its X-valued points satisfy

    \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(X, \mathop{\mathrm{Hom}}\nolimits (U, V)_ n) = \text{Map}(U_ n, \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(X, V_ n))

    and

  2. for \varphi : [m] \to [n] we take the map \mathop{\mathrm{Hom}}\nolimits (U, V)_ m \to \mathop{\mathrm{Hom}}\nolimits (U, V)_ n given by f \mapsto V(\varphi ) \circ f \circ U(\varphi ) on X-valued points as above.


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.