The Stacks project

Lemma 20.10.4. Let $X$ be a ringed space. Let $\mathcal{U} : U = \bigcup _{i \in I} U_ i$ be a covering. Let $\mathcal{O}_\mathcal {U} \subset \mathcal{O}_ X$ be the image presheaf of the map $\bigoplus j_{p!}\mathcal{O}_{U_ i} \to \mathcal{O}_ X$. The chain complex $K(\mathcal{U})_\bullet $ of presheaves of Lemma 20.10.3 above has homology presheaves

\[ H_ i(K(\mathcal{U})_\bullet ) = \left\{ \begin{matrix} 0 & \text{if} & i \not= 0 \\ \mathcal{O}_\mathcal {U} & \text{if} & i = 0 \end{matrix} \right. \]

Proof. Consider the extended complex $K^{ext}_\bullet $ one gets by putting $\mathcal{O}_\mathcal {U}$ in degree $-1$ with the obvious map $K(\mathcal{U})_0 = \bigoplus _{i_0} (j_{i_0})_{p!}\mathcal{O}_{U_{i_0}} \to \mathcal{O}_\mathcal {U}$. It suffices to show that taking sections of this extended complex over any open $W \subset X$ leads to an acyclic complex. In fact, we claim that for every $W \subset X$ the complex $K^{ext}_\bullet (W)$ is homotopy equivalent to the zero complex. Write $I = I_1 \amalg I_2$ where $W \subset U_ i$ if and only if $i \in I_1$.

If $I_1 = \emptyset $, then the complex $K^{ext}_\bullet (W) = 0$ so there is nothing to prove.

If $I_1 \not= \emptyset $, then $\mathcal{O}_\mathcal {U}(W) = \mathcal{O}_ X(W)$ and

\[ K^{ext}_ p(W) = \bigoplus \nolimits _{i_0 \ldots i_ p \in I_1} \mathcal{O}_ X(W). \]

This is true because of the simple description of the presheaves $(j_{i_0 \ldots i_ p})_{p!}\mathcal{O}_{U_{i_0 \ldots i_ p}}$. Moreover, the differential of the complex $K^{ext}_\bullet (W)$ is given by

\[ d(s)_{i_0 \ldots i_ p} = \sum \nolimits _{j = 0, \ldots , p + 1} \sum \nolimits _{i \in I_1} (-1)^ j s_{i_0 \ldots i_{j - 1} i i_ j \ldots i_ p}. \]

The sum is finite as the element $s$ has finite support. Fix an element $i_{\text{fix}} \in I_1$. Define a map

\[ h : K^{ext}_ p(W) \longrightarrow K^{ext}_{p + 1}(W) \]

by the rule

\[ h(s)_{i_0 \ldots i_{p + 1}} = \left\{ \begin{matrix} 0 & \text{if} & i_0 \not= i_{\text{fix}} \\ s_{i_1 \ldots i_{p + 1}} & \text{if} & i_0 = i_{\text{fix}} \end{matrix} \right. \]

We will use the shorthand $h(s)_{i_0 \ldots i_{p + 1}} = (i_0 = i_{\text{fix}}) s_{i_1 \ldots i_ p}$ for this. Then we compute

\begin{eqnarray*} & & (dh + hd)(s)_{i_0 \ldots i_ p} \\ & = & \sum _ j \sum _{i \in I_1} (-1)^ j h(s)_{i_0 \ldots i_{j - 1} i i_ j \ldots i_ p} + (i = i_0) d(s)_{i_1 \ldots i_ p} \\ & = & s_{i_0 \ldots i_ p} + \sum _{j \geq 1}\sum _{i \in I_1} (-1)^ j (i_0 = i_{\text{fix}}) s_{i_1 \ldots i_{j - 1} i i_ j \ldots i_ p} + (i_0 = i_{\text{fix}}) d(s)_{i_1 \ldots i_ p} \end{eqnarray*}

which is equal to $s_{i_0 \ldots i_ p}$ as desired. $\square$


Comments (2)

Comment #5859 by Alex Scheffelin on

A very minor typo in the definition of the map . I believe it should say that if , not .


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01EM. Beware of the difference between the letter 'O' and the digit '0'.