Lemma 20.11.2. Let X be a ringed space. Let \mathcal{U} : U = \bigcup _{i \in I} U_ i be an open covering. There is a transformation
\check{\mathcal{C}}^\bullet (\mathcal{U}, -) \longrightarrow R\Gamma (U, -)
of functors \textit{Mod}(\mathcal{O}_ X) \to D^{+}(\mathcal{O}_ X(U)). In particular this provides canonical maps \check{H}^ p(\mathcal{U}, \mathcal{F}) \to H^ p(U, \mathcal{F}) for \mathcal{F} ranging over \textit{Mod}(\mathcal{O}_ X).
Proof.
Let \mathcal{F} be an \mathcal{O}_ X-module. Choose an injective resolution \mathcal{F} \to \mathcal{I}^\bullet . Consider the double complex \check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{I}^\bullet ) with terms \check{\mathcal{C}}^ p(\mathcal{U}, \mathcal{I}^ q). There is a map of complexes
\alpha : \Gamma (U, \mathcal{I}^\bullet ) \longrightarrow \text{Tot}(\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{I}^\bullet ))
coming from the maps \mathcal{I}^ q(U) \to \check{H}^0(\mathcal{U}, \mathcal{I}^ q) and a map of complexes
\beta : \check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F}) \longrightarrow \text{Tot}(\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{I}^\bullet ))
coming from the map \mathcal{F} \to \mathcal{I}^0. We can apply Homology, Lemma 12.25.4 to see that \alpha is a quasi-isomorphism. Namely, Lemma 20.11.1 implies that the qth row of the double complex \check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{I}^\bullet ) is a resolution of \Gamma (U, \mathcal{I}^ q). Hence \alpha becomes invertible in D^{+}(\mathcal{O}_ X(U)) and the transformation of the lemma is the composition of \beta followed by the inverse of \alpha . We omit the verification that this is functorial.
\square
Comments (0)