The Stacks project

Lemma 20.13.4 (Leray spectral sequence). Let $f : X \to Y$ be a morphism of ringed spaces. Let $\mathcal{F}^\bullet $ be a bounded below complex of $\mathcal{O}_ X$-modules. There is a spectral sequence

\[ E_2^{p, q} = H^ p(Y, R^ qf_*(\mathcal{F}^\bullet )) \]

converging to $H^{p + q}(X, \mathcal{F}^\bullet )$.

Proof. This is just the Grothendieck spectral sequence Derived Categories, Lemma 13.22.2 coming from the composition of functors $\Gamma _{res} = \Gamma (Y, -) \circ f_*$ where $\Gamma _{res}$ is as in the proof of Lemma 20.13.1. To see that the assumptions of Derived Categories, Lemma 13.22.2 are satisfied, see the proof of Lemma 20.13.1 or Remark 20.13.2. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01F2. Beware of the difference between the letter 'O' and the digit '0'.