The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

20.15 Functoriality of cohomology

Lemma 20.15.1. Let $f : X \to Y$ be a morphism of ringed spaces. Let $\mathcal{G}^\bullet $, resp. $\mathcal{F}^\bullet $ be a bounded below complex of $\mathcal{O}_ Y$-modules, resp. $\mathcal{O}_ X$-modules. Let $\varphi : \mathcal{G}^\bullet \to f_*\mathcal{F}^\bullet $ be a morphism of complexes. There is a canonical morphism

\[ \mathcal{G}^\bullet \longrightarrow Rf_*(\mathcal{F}^\bullet ) \]

in $D^{+}(Y)$. Moreover this construction is functorial in the triple $(\mathcal{G}^\bullet , \mathcal{F}^\bullet , \varphi )$.

Proof. Choose an injective resolution $\mathcal{F}^\bullet \to \mathcal{I}^\bullet $. By definition $Rf_*(\mathcal{F}^\bullet )$ is represented by $f_*\mathcal{I}^\bullet $ in $K^{+}(\mathcal{O}_ Y)$. The composition

\[ \mathcal{G}^\bullet \to f_*\mathcal{F}^\bullet \to f_*\mathcal{I}^\bullet \]

is a morphism in $K^{+}(Y)$ which turns into the morphism of the lemma upon applying the localization functor $j_ Y : K^{+}(Y) \to D^{+}(Y)$. $\square$

Let $f : X \to Y$ be a morphism of ringed spaces. Let $\mathcal{G}$ be an $\mathcal{O}_ Y$-module and let $\mathcal{F}$ be an $\mathcal{O}_ X$-module. Recall that an $f$-map $\varphi $ from $\mathcal{G}$ to $\mathcal{F}$ is a map $\varphi : \mathcal{G} \to f_*\mathcal{F}$, or what is the same thing, a map $\varphi : f^*\mathcal{G} \to \mathcal{F}$. See Sheaves, Definition 6.21.7. Such an $f$-map gives rise to a morphism of complexes

20.15.1.1
\begin{equation} \label{cohomology-equation-functorial-derived} \varphi : R\Gamma (Y, \mathcal{G}) \longrightarrow R\Gamma (X, \mathcal{F}) \end{equation}

in $D^{+}(\mathcal{O}_ Y(Y))$. Namely, we use the morphism $\mathcal{G} \to Rf_*\mathcal{F}$ in $D^{+}(Y)$ of Lemma 20.15.1, and we apply $R\Gamma (Y, -)$. By Lemma 20.14.1 we see that $R\Gamma (X, \mathcal{F}) = R\Gamma (Y, Rf_*\mathcal{F})$ and we get the displayed arrow. We spell this out completely in Remark 20.15.2 below. In particular it gives rise to maps on cohomology

20.15.1.2
\begin{equation} \label{cohomology-equation-functorial} \varphi : H^ i(Y, \mathcal{G}) \longrightarrow H^ i(X, \mathcal{F}). \end{equation}

Remark 20.15.2. Let $f : X \to Y$ be a morphism of ringed spaces. Let $\mathcal{G}$ be an $\mathcal{O}_ Y$-module. Let $\mathcal{F}$ be an $\mathcal{O}_ X$-module. Let $\varphi $ be an $f$-map from $\mathcal{G}$ to $\mathcal{F}$. Choose a resolution $\mathcal{F} \to \mathcal{I}^\bullet $ by a complex of injective $\mathcal{O}_ X$-modules. Choose resolutions $\mathcal{G} \to \mathcal{J}^\bullet $ and $f_*\mathcal{I}^\bullet \to (\mathcal{J}')^\bullet $ by complexes of injective $\mathcal{O}_ Y$-modules. By Derived Categories, Lemma 13.18.6 there exists a map of complexes $\beta $ such that the diagram

20.15.2.1
\begin{equation} \label{cohomology-equation-choice} \xymatrix{ \mathcal{G} \ar[d] \ar[r] & f_*\mathcal{F} \ar[r] & f_*\mathcal{I}^\bullet \ar[d] \\ \mathcal{J}^\bullet \ar[rr]^\beta & & (\mathcal{J}')^\bullet } \end{equation}

commutes. Applying global section functors we see that we get a diagram

\[ \xymatrix{ & & \Gamma (Y, f_*\mathcal{I}^\bullet ) \ar[d]_{qis} \ar@{=}[r] & \Gamma (X, \mathcal{I}^\bullet ) \\ \Gamma (Y, \mathcal{J}^\bullet ) \ar[rr]^\beta & & \Gamma (Y, (\mathcal{J}')^\bullet ) & } \]

The complex on the bottom left represents $R\Gamma (Y, \mathcal{G})$ and the complex on the top right represents $R\Gamma (X, \mathcal{F})$. The vertical arrow is a quasi-isomorphism by Lemma 20.14.1 which becomes invertible after applying the localization functor $K^{+}(\mathcal{O}_ Y(Y)) \to D^{+}(\mathcal{O}_ Y(Y))$. The arrow (20.15.1.1) is given by the composition of the horizontal map by the inverse of the vertical map.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01F7. Beware of the difference between the letter 'O' and the digit '0'.