20.14 Functoriality of cohomology
Lemma 20.14.1. Let f : X \to Y be a morphism of ringed spaces. Let \mathcal{G}^\bullet , resp. \mathcal{F}^\bullet be a bounded below complex of \mathcal{O}_ Y-modules, resp. \mathcal{O}_ X-modules. Let \varphi : \mathcal{G}^\bullet \to f_*\mathcal{F}^\bullet be a morphism of complexes. There is a canonical morphism
\mathcal{G}^\bullet \longrightarrow Rf_*(\mathcal{F}^\bullet )
in D^{+}(Y). Moreover this construction is functorial in the triple (\mathcal{G}^\bullet , \mathcal{F}^\bullet , \varphi ).
Proof.
Choose an injective resolution \mathcal{F}^\bullet \to \mathcal{I}^\bullet . By definition Rf_*(\mathcal{F}^\bullet ) is represented by f_*\mathcal{I}^\bullet in K^{+}(\mathcal{O}_ Y). The composition
\mathcal{G}^\bullet \to f_*\mathcal{F}^\bullet \to f_*\mathcal{I}^\bullet
is a morphism in K^{+}(Y) which turns into the morphism of the lemma upon applying the localization functor j_ Y : K^{+}(Y) \to D^{+}(Y).
\square
Let f : X \to Y be a morphism of ringed spaces. Let \mathcal{G} be an \mathcal{O}_ Y-module and let \mathcal{F} be an \mathcal{O}_ X-module. Recall that an f-map \varphi from \mathcal{G} to \mathcal{F} is a map \varphi : \mathcal{G} \to f_*\mathcal{F}, or what is the same thing, a map \varphi : f^*\mathcal{G} \to \mathcal{F}. See Sheaves, Definition 6.21.7. Such an f-map gives rise to a morphism of complexes
20.14.1.1
\begin{equation} \label{cohomology-equation-functorial-derived} \varphi : R\Gamma (Y, \mathcal{G}) \longrightarrow R\Gamma (X, \mathcal{F}) \end{equation}
in D^{+}(\mathcal{O}_ Y(Y)). Namely, we use the morphism \mathcal{G} \to Rf_*\mathcal{F} in D^{+}(Y) of Lemma 20.14.1, and we apply R\Gamma (Y, -). By Lemma 20.13.1 we see that R\Gamma (X, \mathcal{F}) = R\Gamma (Y, Rf_*\mathcal{F}) and we get the displayed arrow. We spell this out completely in Remark 20.14.2 below. In particular it gives rise to maps on cohomology
20.14.1.2
\begin{equation} \label{cohomology-equation-functorial} \varphi : H^ i(Y, \mathcal{G}) \longrightarrow H^ i(X, \mathcal{F}). \end{equation}
Comments (0)