The Stacks project

Lemma 25.4.2. Let $\mathcal{C}$ be a site. Let $\mathcal{F} \to \mathcal{G}$ be a morphism of presheaves of sets. Denote $K$ the simplicial object of $\textit{PSh}(\mathcal{C})$ whose $n$th term is the $(n + 1)$st fibre product of $\mathcal{F}$ over $\mathcal{G}$, see Simplicial, Example 14.3.5. Then, if $\mathcal{F} \to \mathcal{G}$ is surjective after sheafification, we have

\[ H_ i(K) = \left\{ \begin{matrix} 0 & \text{if} & i > 0 \\ \mathbf{Z}_\mathcal {G}^\# & \text{if} & i = 0 \end{matrix} \right. \]

The isomorphism in degree $0$ is given by the morphism $H_0(K) \to \mathbf{Z}_\mathcal {G}^\# $ coming from the map $(\mathbf{Z}_ K^\# )_0 = \mathbf{Z}_\mathcal {F}^\# \to \mathbf{Z}_\mathcal {G}^\# $.

Proof. Let $\mathcal{G}' \subset \mathcal{G}$ be the image of the morphism $\mathcal{F} \to \mathcal{G}$. Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. Set $A = \mathcal{F}(U)$ and $B = \mathcal{G}'(U)$. Then the simplicial set $K(U)$ is equal to the simplicial set with $n$-simplices given by

\[ A \times _ B A \times _ B \ldots \times _ B A\ (n + 1 \text{ factors)}. \]

By Simplicial, Lemma 14.32.3 the morphism $K(U) \to B$ is a trivial Kan fibration. Thus it is a homotopy equivalence (Simplicial, Lemma 14.30.8). Hence applying the functor “free abelian group on” to this we deduce that

\[ \mathbf{Z}_ K(U) \longrightarrow \mathbf{Z}_ B \]

is a homotopy equivalence. Note that $s(\mathbf{Z}_ B)$ is the complex

\[ \ldots \to \bigoplus \nolimits _{b \in B}\mathbf{Z} \xrightarrow {0} \bigoplus \nolimits _{b \in B}\mathbf{Z} \xrightarrow {1} \bigoplus \nolimits _{b \in B}\mathbf{Z} \xrightarrow {0} \bigoplus \nolimits _{b \in B}\mathbf{Z} \to 0 \]

see Simplicial, Lemma 14.23.3. Thus we see that $H_ i(s(\mathbf{Z}_ K(U))) = 0$ for $i > 0$, and $H_0(s(\mathbf{Z}_ K(U))) = \bigoplus _{b \in B}\mathbf{Z} = \bigoplus _{s \in \mathcal{G}'(U)} \mathbf{Z}$. These identifications are compatible with restriction maps.

We conclude that $H_ i(s(\mathbf{Z}_ K)) = 0$ for $i > 0$ and $H_0(s(\mathbf{Z}_ K)) = \mathbf{Z}_{\mathcal{G}'}$, where here we compute homology groups in $\textit{PAb}(\mathcal{C})$. Since sheafification is an exact functor we deduce the result of the lemma. Namely, the exactness implies that $H_0(s(\mathbf{Z}_ K))^\# = H_0(s(\mathbf{Z}_ K^\# ))$, and similarly for other indices. $\square$

Comments (3)

Comment #206 by Rex on

Typo: "given by the morphsm"

Comment #6778 by Bogdan on

I think the reference in "Thus it is a homotopy equivalence (Simplicial, Lemma 14.32.3)" should refer to some other lemma.

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01GC. Beware of the difference between the letter 'O' and the digit '0'.