The Stacks project

Lemma 25.4.4. Let $\mathcal{C}$ be a site. Let $K$ be a simplicial presheaf. Let $\mathcal{G}$ be a presheaf. Let $K \to \mathcal{G}$ be an augmentation of $K$ towards $\mathcal{G}$. Assume that

  1. The morphism of presheaves $K_0 \to \mathcal{G}$ becomes a surjection after sheafification.

  2. The morphism

    \[ (d^1_0, d^1_1) : K_1 \longrightarrow K_0 \times _\mathcal {G} K_0 \]

    becomes a surjection after sheafification.

  3. For every $n \geq 1$ the morphism

    \[ K_{n + 1} \longrightarrow (\text{cosk}_ n \text{sk}_ n K)_{n + 1} \]

    turns into a surjection after sheafification.

Then $H_ i(K) = 0$ for $i > 0$ and $H_0(K) = \mathbf{Z}_\mathcal {G}^\# $.

Proof. Denote $K^ n = \text{cosk}_ n \text{sk}_ n K$ for $n \geq 1$. Define $K^0$ as the simplicial object with terms $(K^0)_ n$ equal to the $(n + 1)$-fold fibred product $K_0 \times _\mathcal {G} \ldots \times _\mathcal {G} K_0$, see Simplicial, Example 14.3.5. We have morphisms

\[ K \longrightarrow \ldots \to K^ n \to K^{n - 1} \to \ldots \to K^1 \to K^0. \]

The morphisms $K \to K^ i$, $K^ j \to K^ i$ for $j \geq i \geq 1$ come from the universal properties of the $\text{cosk}_ n$ functors. The morphism $K^1 \to K^0$ is the canonical morphism from Simplicial, Remark 14.20.4. We also recall that $K^0 \to \text{cosk}_1 \text{sk}_1 K^0$ is an isomorphism, see Simplicial, Lemma 14.20.3.

By Lemma 25.4.2 we see that $H_ i(K^0) = 0$ for $i > 0$ and $H_0(K^0) = \mathbf{Z}_\mathcal {G}^\# $.

Pick $n \geq 1$. Consider the morphism $K^ n \to K^{n - 1}$. It is an isomorphism on terms of degree $< n$. Note that $K^ n \to \text{cosk}_ n \text{sk}_ n K^ n$ and $K^{n - 1} \to \text{cosk}_ n \text{sk}_ n K^{n - 1}$ are isomorphisms. Note that $(K^ n)_ n = K_ n$ and that $(K^{n - 1})_ n = (\text{cosk}_{n - 1} \text{sk}_{n - 1} K)_ n$. Hence by assumption, we have that $(K^ n)_ n \to (K^{n - 1})_ n$ is a morphism of presheaves which becomes surjective after sheafification. By Lemma 25.4.3 we conclude that $H_ i(K^ n) = H_ i(K^{n - 1})$. Combined with the above this proves the lemma. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01GE. Beware of the difference between the letter 'O' and the digit '0'.