Definition 26.3.1. Let $f : X \to Y$ be a morphism of locally ringed spaces. We say that $f$ is an open immersion if $f$ is a homeomorphism of $X$ onto an open subset of $Y$, and the map $f^{-1}\mathcal{O}_ Y \to \mathcal{O}_ X$ is an isomorphism.
Definition 26.3.1. Let $f : X \to Y$ be a morphism of locally ringed spaces. We say that $f$ is an open immersion if $f$ is a homeomorphism of $X$ onto an open subset of $Y$, and the map $f^{-1}\mathcal{O}_ Y \to \mathcal{O}_ X$ is an isomorphism.
Comments (0)
There are also: