Lemma 26.6.1. Let X be a locally ringed space. Let Y be an affine scheme. Let f \in \mathop{\mathrm{Mor}}\nolimits (X, Y) be a morphism of locally ringed spaces. Given a point x \in X consider the ring maps
\Gamma (Y, \mathcal{O}_ Y) \xrightarrow {f^\sharp } \Gamma (X, \mathcal{O}_ X) \to \mathcal{O}_{X, x}
Let \mathfrak p \subset \Gamma (Y, \mathcal{O}_ Y) denote the inverse image of \mathfrak m_ x. Let y \in Y be the corresponding point. Then f(x) = y.
Proof.
Consider the commutative diagram
\xymatrix{ \Gamma (X, \mathcal{O}_ X) \ar[r] & \mathcal{O}_{X, x} \\ \Gamma (Y, \mathcal{O}_ Y) \ar[r] \ar[u] & \mathcal{O}_{Y, f(x)} \ar[u] }
(see the discussion of f-maps below Sheaves, Definition 6.21.7). Since the right vertical arrow is local we see that \mathfrak m_{f(x)} is the inverse image of \mathfrak m_ x. The result follows.
\square
Comments (0)