The Stacks project

Lemma 26.10.1. Let $X$ be a scheme. Let $i : Z \to X$ be a closed immersion of locally ringed spaces.

  1. The locally ringed space $Z$ is a scheme,

  2. the kernel $\mathcal{I}$ of the map $\mathcal{O}_ X \to i_*\mathcal{O}_ Z$ is a quasi-coherent sheaf of ideals,

  3. for any affine open $U = \mathop{\mathrm{Spec}}(R)$ of $X$ the morphism $i^{-1}(U) \to U$ can be identified with $\mathop{\mathrm{Spec}}(R/I) \to \mathop{\mathrm{Spec}}(R)$ for some ideal $I \subset R$, and

  4. we have $\mathcal{I}|_ U = \widetilde I$.

In particular, any sheaf of ideals locally generated by sections is a quasi-coherent sheaf of ideals (and vice versa), and any closed subspace of $X$ is a scheme.

Proof. Let $i : Z \to X$ be a closed immersion. Let $z \in Z$ be a point. Choose any affine open neighbourhood $i(z) \in U \subset X$. Say $U = \mathop{\mathrm{Spec}}(R)$. By Lemma 26.8.2 we know that $i^{-1}(U) \to U$ can be identified with the morphism of affine schemes $\mathop{\mathrm{Spec}}(R/I) \to \mathop{\mathrm{Spec}}(R)$. First of all this implies that $z \in i^{-1}(U) \subset Z$ is an affine neighbourhood of $z$. Thus $Z$ is a scheme. Second this implies that $\mathcal{I}|_ U$ is $\widetilde I$. In other words for every point $x \in i(Z)$ there exists an open neighbourhood such that $\mathcal{I}$ is quasi-coherent in that neighbourhood. Note that $\mathcal{I}|_{X \setminus i(Z)} \cong \mathcal{O}_{X \setminus i(Z)}$. Thus the restriction of the sheaf of ideals is quasi-coherent on $X \setminus i(Z)$ also. We conclude that $\mathcal{I}$ is quasi-coherent. $\square$


Comments (0)

There are also:

  • 10 comment(s) on Section 26.10: Immersions of schemes

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01IN. Beware of the difference between the letter 'O' and the digit '0'.