The Stacks project

Schemes can be glued to give new schemes.

Lemma 26.14.2. In Lemma 26.14.1 above, assume that all $X_ i$ are schemes. Then the resulting locally ringed space $X$ is a scheme.

Proof. This is clear since each of the $U_ i$ is a scheme and hence every $x \in X$ has an affine neighbourhood. $\square$

Comments (1)

Comment #840 by on

Suggested slogan: Schemes are closed under gluing in the category of locally ringed spaces.

There are also:

  • 10 comment(s) on Section 26.14: Glueing schemes

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01JC. Beware of the difference between the letter 'O' and the digit '0'.