Lemma 26.23.7. Let $j : X \to Y$ be a morphism of schemes. If
$j$ is injective on points, and
for any $x \in X$ the ring map $j^\sharp _ x : \mathcal{O}_{Y, j(x)} \to \mathcal{O}_{X, x}$ is surjective,
then $j$ is a monomorphism.
Lemma 26.23.7. Let $j : X \to Y$ be a morphism of schemes. If
$j$ is injective on points, and
for any $x \in X$ the ring map $j^\sharp _ x : \mathcal{O}_{Y, j(x)} \to \mathcal{O}_{X, x}$ is surjective,
then $j$ is a monomorphism.
Proof. Let $a, b : Z \to X$ be two morphisms of schemes such that $j \circ a = j \circ b$. Then (1) implies $a = b$ as underlying maps of topological spaces. For any $z \in Z$ we have $a^\sharp _ z \circ j^\sharp _{a(z)} = b^\sharp _ z \circ j^\sharp _{b(z)}$ as maps $\mathcal{O}_{Y, j(a(z))} \to \mathcal{O}_{Z, z}$. The surjectivity of the maps $j^\sharp _ x$ forces $a^\sharp _ z = b^\sharp _ z$, $\forall z \in Z$. This implies that $a^\sharp = b^\sharp $. Hence we conclude $a = b$ as morphisms of schemes as desired. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: