The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

Lemma 26.2.1. Let $S$ be a scheme. Let $\mathcal{B}$ be a basis for the topology of $S$. Suppose given the following data:

  1. For every $U \in \mathcal{B}$ a scheme $f_ U : X_ U \to U$ over $U$.

  2. For every pair $U, V \in \mathcal{B}$ such that $V \subset U$ a morphism $\rho ^ U_ V : X_ V \to X_ U$.

Assume that

  1. each $\rho ^ U_ V$ induces an isomorphism $X_ V \to f_ U^{-1}(V)$ of schemes over $V$,

  2. whenever $W, V, U \in \mathcal{B}$, with $W \subset V \subset U$ we have $\rho ^ U_ W = \rho ^ U_ V \circ \rho ^ V_ W$.

Then there exists a morphism $f : X \to S$ of schemes and isomorphisms $i_ U : f^{-1}(U) \to X_ U$ over $U \in \mathcal{B}$ such that for $V, U \in \mathcal{B}$ with $V \subset U$ the composition

\[ \xymatrix{ X_ V \ar[r]^{i_ V^{-1}} & f^{-1}(V) \ar[rr]^{inclusion} & & f^{-1}(U) \ar[r]^{i_ U} & X_ U } \]

is the morphism $\rho ^ U_ V$. Moreover $X$ is unique up to unique isomorphism over $S$.

Proof. To prove this we will use Schemes, Lemma 25.15.4. First we define a contravariant functor $F$ from the category of schemes to the category of sets. Namely, for a scheme $T$ we set

\[ F(T) = \left\{ \begin{matrix} (g, \{ h_ U\} _{U \in \mathcal{B}}), \ g : T \to S, \ h_ U : g^{-1}(U) \to X_ U, \\ f_ U \circ h_ U = g|_{g^{-1}(U)}, \ h_ U|_{g^{-1}(V)} = \rho ^ U_ V \circ h_ V \ \forall \ V, U \in \mathcal{B}, V \subset U \end{matrix} \right\} . \]

The restriction mapping $F(T) \to F(T')$ given a morphism $T' \to T$ is just gotten by composition. For any $W \in \mathcal{B}$ we consider the subfunctor $F_ W \subset F$ consisting of those systems $(g, \{ h_ U\} )$ such that $g(T) \subset W$.

First we show $F$ satisfies the sheaf property for the Zariski topology. Suppose that $T$ is a scheme, $T = \bigcup V_ i$ is an open covering, and $\xi _ i \in F(V_ i)$ is an element such that $\xi _ i|_{V_ i \cap V_ j} = \xi _ j|_{V_ i \cap V_ j}$. Say $\xi _ i = (g_ i, \{ h_{i, U}\} )$. Then we immediately see that the morphisms $g_ i$ glue to a unique global morphism $g : T \to S$. Moreover, it is clear that $g^{-1}(U) = \bigcup g_ i^{-1}(U)$. Hence the morphisms $h_{i, U} : g_ i^{-1}(U) \to X_ U$ glue to a unique morphism $h_ U : U \to X_ U$. It is easy to verify that the system $(g, \{ f_ U\} )$ is an element of $F(T)$. Hence $F$ satisfies the sheaf property for the Zariski topology.

Next we verify that each $F_ W$, $W \in \mathcal{B}$ is representable. Namely, we claim that the transformation of functors

\[ F_ W \longrightarrow \mathop{Mor}\nolimits (-, X_ W), \ (g, \{ h_ U\} ) \longmapsto h_ W \]

is an isomorphism. To see this suppose that $T$ is a scheme and $\alpha : T \to X_ W$ is a morphism. Set $g = f_ W \circ \alpha $. For any $U \in \mathcal{B}$ such that $U \subset W$ we can define $h_ U : g^{-1}(U) \to X_ U$ be the composition $(\rho ^ W_ U)^{-1} \circ \alpha |_{g^{-1}(U)}$. This works because the image $\alpha (g^{-1}(U))$ is contained in $f_ W^{-1}(U)$ and condition (a) of the lemma. It is clear that $f_ U \circ h_ U = g|_{g^{-1}(U)}$ for such a $U$. Moreover, if also $V \in \mathcal{B}$ and $V \subset U \subset W$, then $\rho ^ U_ V \circ h_ V = h_ U|_{g^{-1}(V)}$ by property (b) of the lemma. We still have to define $h_ U$ for an arbitrary element $U \in \mathcal{B}$. Since $\mathcal{B}$ is a basis for the topology on $S$ we can find an open covering $U \cap W = \bigcup U_ i$ with $U_ i \in \mathcal{B}$. Since $g$ maps into $W$ we have $g^{-1}(U) = g^{-1}(U \cap W) = \bigcup g^{-1}(U_ i)$. Consider the morphisms $h_ i = \rho ^ U_{U_ i} \circ h_{U_ i} : g^{-1}(U_ i) \to X_ U$. It is a simple matter to use condition (b) of the lemma to prove that $h_ i|_{g^{-1}(U_ i) \cap g^{-1}(U_ j)} = h_ j|_{g^{-1}(U_ i) \cap g^{-1}(U_ j)}$. Hence these morphisms glue to give the desired morphism $h_ U : g^{-1}(U) \to X_ U$. We omit the (easy) verification that the system $(g, \{ h_ U\} )$ is an element of $F_ W(T)$ which maps to $\alpha $ under the displayed arrow above.

Next, we verify each $F_ W \subset F$ is representable by open immersions. This is clear from the definitions.

Finally we have to verify the collection $(F_ W)_{W \in \mathcal{B}}$ covers $F$. This is clear by construction and the fact that $\mathcal{B}$ is a basis for the topology of $S$.

Let $X$ be a scheme representing the functor $F$. Let $(f, \{ i_ U\} ) \in F(X)$ be a “universal family”. Since each $F_ W$ is representable by $X_ W$ (via the morphism of functors displayed above) we see that $i_ W : f^{-1}(W) \to X_ W$ is an isomorphism as desired. The lemma is proved. $\square$


Comments (2)

Comment #567 by Will Chen on

In the proof, "Say ", the should be .

There are also:

  • 3 comment(s) on Section 26.2: Relative glueing

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01LH. Beware of the difference between the letter 'O' and the digit '0'.