Lemma 27.3.4. In Situation 27.3.1. There exists a morphism of schemes
with the following properties:
for every affine open $U \subset S$ there exists an isomorphism $i_ U : \pi ^{-1}(U) \to \mathop{\mathrm{Spec}}(\mathcal{A}(U))$ over $U$, and
for $U \subset U' \subset S$ affine open the composition
\[ \xymatrix{ \mathop{\mathrm{Spec}}(\mathcal{A}(U)) \ar[r]^{i_ U^{-1}} & \pi ^{-1}(U) \ar[rr]^{inclusion} & & \pi ^{-1}(U') \ar[r]^{i_{U'}} & \mathop{\mathrm{Spec}}(\mathcal{A}(U')) } \]is the open immersion of Lemma 27.3.2 above.
Moreover, $\underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A})$ is unique up to unique isomorphism over $S$.
Comments (0)