Lemma 27.3.4. In Situation 27.3.1. There exists a morphism of schemes
with the following properties:
for every affine open U \subset S there exists an isomorphism i_ U : \pi ^{-1}(U) \to \mathop{\mathrm{Spec}}(\mathcal{A}(U)) over U, and
for U \subset U' \subset S affine open the composition
\xymatrix{ \mathop{\mathrm{Spec}}(\mathcal{A}(U)) \ar[r]^{i_ U^{-1}} & \pi ^{-1}(U) \ar[rr]^{inclusion} & & \pi ^{-1}(U') \ar[r]^{i_{U'}} & \mathop{\mathrm{Spec}}(\mathcal{A}(U')) }is the open immersion of Lemma 27.3.2 above.
Moreover, \underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A}) is unique up to unique isomorphism over S.
Comments (0)