Lemma 27.10.3. Let S be a graded ring. Let M be a graded S-module. Set X = \text{Proj}(S). Assume X is covered by the standard opens D_+(f) with f \in S_1, e.g., if S is generated by S_1 over S_0. Then the sheaves \mathcal{O}_ X(n) are invertible and the maps (27.10.1.1), (27.10.1.2), and (27.10.1.5) are isomorphisms. In particular, these maps induce isomorphisms
\mathcal{O}_ X(1)^{\otimes n} \cong \mathcal{O}_ X(n) \quad \text{and} \quad \widetilde{M} \otimes _{\mathcal{O}_ X} \mathcal{O}_ X(n) = \widetilde{M}(n) \cong \widetilde{M(n)}
Thus (27.9.0.2) becomes a map
27.10.3.1
\begin{equation} \label{constructions-equation-map-global-sections-degree-n-simplified} M_ n \longrightarrow \Gamma (X, \widetilde{M}(n)) \end{equation}
and (27.10.1.6) becomes a map
27.10.3.2
\begin{equation} \label{constructions-equation-global-sections-more-generally-simplified} M \longrightarrow \bigoplus \nolimits _{n \in \mathbf{Z}} \Gamma (X, \widetilde{M}(n)). \end{equation}
Comments (0)
There are also: