Lemma 27.10.2. Let S be a graded ring. Set X = \text{Proj}(S). Let f \in S be homogeneous of degree d > 0. The sheaves \mathcal{O}_ X(nd)|_{D_{+}(f)} are invertible, and in fact trivial for all n \in \mathbf{Z} (see Modules, Definition 17.25.1). The maps (27.10.1.1) restricted to D_{+}(f)
\mathcal{O}_ X(nd)|_{D_{+}(f)} \otimes _{\mathcal{O}_{D_{+}(f)}} \mathcal{O}_ X(m)|_{D_{+}(f)} \longrightarrow \mathcal{O}_ X(nd + m)|_{D_{+}(f)},
the maps (27.10.1.2) restricted to D_+(f)
\mathcal{O}_ X(nd)|_{D_{+}(f)} \otimes _{\mathcal{O}_{D_{+}(f)}} \mathcal{F}(m)|_{D_{+}(f)} \longrightarrow \mathcal{F}(nd + m)|_{D_{+}(f)},
and the maps (27.10.1.5) restricted to D_{+}(f)
\widetilde M(nd)|_{D_{+}(f)} = \widetilde M|_{D_{+}(f)} \otimes _{\mathcal{O}_{D_{+}(f)}} \mathcal{O}_ X(nd)|_{D_{+}(f)} \longrightarrow \widetilde{M(nd)}|_{D_{+}(f)}
are isomorphisms for all n, m \in \mathbf{Z}.
Proof.
The (not graded) S-module maps S \to S(nd), and M \to M(nd), given by x \mapsto f^ n x become isomorphisms after inverting f. The first shows that S_{(f)} \cong S(nd)_{(f)} which gives an isomorphism \mathcal{O}_{D_{+}(f)} \cong \mathcal{O}_ X(nd)|_{D_{+}(f)}. The second shows that the map S(nd)_{(f)} \otimes _{S_{(f)}} M_{(f)} \to M(nd)_{(f)} is an isomorphism. The case of the map (27.10.1.2) is a consequence of the case of the map (27.10.1.1).
\square
Comments (0)
There are also: