Definition 17.25.1. Let (X, \mathcal{O}_ X) be a ringed space. An invertible \mathcal{O}_ X-module is a sheaf of \mathcal{O}_ X-modules \mathcal{L} such that the functor
\textit{Mod}(\mathcal{O}_ X) \longrightarrow \textit{Mod}(\mathcal{O}_ X),\quad \mathcal{F} \longmapsto \mathcal{L} \otimes _{\mathcal{O}_ X} \mathcal{F}
is an equivalence of categories. We say that \mathcal{L} is trivial if it is isomorphic as an \mathcal{O}_ X-module to \mathcal{O}_ X.
Comments (0)