17.25 Invertible modules
Similarly to the case of modules over rings (More on Algebra, Section 15.117) we have the following definition.
Definition 17.25.1. Let (X, \mathcal{O}_ X) be a ringed space. An invertible \mathcal{O}_ X-module is a sheaf of \mathcal{O}_ X-modules \mathcal{L} such that the functor
\textit{Mod}(\mathcal{O}_ X) \longrightarrow \textit{Mod}(\mathcal{O}_ X),\quad \mathcal{F} \longmapsto \mathcal{L} \otimes _{\mathcal{O}_ X} \mathcal{F}
is an equivalence of categories. We say that \mathcal{L} is trivial if it is isomorphic as an \mathcal{O}_ X-module to \mathcal{O}_ X.
Lemma 17.25.4 below explains the relationship with locally free modules of rank 1.
Lemma 17.25.2. Let (X, \mathcal{O}_ X) be a ringed space. Let \mathcal{L} be an \mathcal{O}_ X-module. Equivalent are
\mathcal{L} is invertible, and
there exists an \mathcal{O}_ X-module \mathcal{N} such that \mathcal{L} \otimes _{\mathcal{O}_ X} \mathcal{N} \cong \mathcal{O}_ X.
In this case \mathcal{L} is locally a direct summand of a finite free \mathcal{O}_ X-module and the module \mathcal{N} in (2) is isomorphic to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{L}, \mathcal{O}_ X).
Proof.
Assume (1). Then the functor - \otimes _{\mathcal{O}_ X} \mathcal{L} is essentially surjective, hence there exists an \mathcal{O}_ X-module \mathcal{N} as in (2). If (2) holds, then the functor - \otimes _{\mathcal{O}_ X} \mathcal{N} is a quasi-inverse to the functor - \otimes _{\mathcal{O}_ X} \mathcal{L} and we see that (1) holds.
Assume (1) and (2) hold. Denote \psi : \mathcal{L} \otimes _{\mathcal{O}_ X} \mathcal{N} \to \mathcal{O}_ X the given isomorphism. Let x \in X. Choose an open neighbourhood U an integer n \geq 1 and sections s_ i \in \mathcal{L}(U), t_ i \in \mathcal{N}(U) such that \psi (\sum s_ i \otimes t_ i) = 1. Consider the isomorphisms
\mathcal{L}|_ U \to \mathcal{L}|_ U \otimes _{\mathcal{O}_ U} \mathcal{L}|_ U \otimes _{\mathcal{O}_ U} \mathcal{N}|_ U \to \mathcal{L}|_ U
where the first arrow sends s to \sum s_ i \otimes s \otimes t_ i and the second arrow sends s \otimes s' \otimes t to \psi (s' \otimes t)s. We conclude that s \mapsto \sum \psi (s \otimes t_ i)s_ i is an automorphism of \mathcal{L}|_ U. This automorphism factors as
\mathcal{L}|_ U \to \mathcal{O}_ U^{\oplus n} \to \mathcal{L}|_ U
where the first arrow is given by s \mapsto (\psi (s \otimes t_1), \ldots , \psi (s \otimes t_ n)) and the second arrow by (a_1, \ldots , a_ n) \mapsto \sum a_ i s_ i. In this way we conclude that \mathcal{L}|_ U is a direct summand of a finite free \mathcal{O}_ U-module.
Assume (1) and (2) hold. Consider the evaluation map
\mathcal{L} \otimes _{\mathcal{O}_ X} \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{L}, \mathcal{O}_ X) \longrightarrow \mathcal{O}_ X
To finish the proof of the lemma we will show this is an isomorphism by checking it induces isomorphisms on stalks. Let x \in X. Since we know (by the previous paragraph) that \mathcal{L} is a finitely presented \mathcal{O}_ X-module we can use Lemma 17.22.4 to see that it suffices to show that
\mathcal{L}_ x \otimes _{\mathcal{O}_{X, x}} \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_{X, x}}(\mathcal{L}_ x, \mathcal{O}_{X, x}) \longrightarrow \mathcal{O}_{X, x}
is an isomorphism. Since \mathcal{L}_ x \otimes _{\mathcal{O}_{X, x}} \mathcal{N}_ x = (\mathcal{L} \otimes _{\mathcal{O}_ X} \mathcal{N})_ x = \mathcal{O}_{X, x} (Lemma 17.16.1) the desired result follows from More on Algebra, Lemma 15.117.2.
\square
Lemma 17.25.3. Let f : (X, \mathcal{O}_ X) \to (Y, \mathcal{O}_ Y) be a morphism of ringed spaces. The pullback f^*\mathcal{L} of an invertible \mathcal{O}_ Y-module is invertible.
Proof.
By Lemma 17.25.2 there exists an \mathcal{O}_ Y-module \mathcal{N} such that \mathcal{L} \otimes _{\mathcal{O}_ Y} \mathcal{N} \cong \mathcal{O}_ Y. Pulling back we get f^*\mathcal{L} \otimes _{\mathcal{O}_ X} f^*\mathcal{N} \cong \mathcal{O}_ X by Lemma 17.16.4. Thus f^*\mathcal{L} is invertible by Lemma 17.25.2.
\square
Lemma 17.25.4. Let (X, \mathcal{O}_ X) be a ringed space. Any locally free \mathcal{O}_ X-module of rank 1 is invertible. If all stalks \mathcal{O}_{X, x} are local rings, then the converse holds as well (but in general this is not the case).
Proof.
The parenthetical statement follows by considering a one point space X with sheaf of rings \mathcal{O}_ X given by a ring R. Then invertible \mathcal{O}_ X-modules correspond to invertible R-modules, hence as soon as \mathop{\mathrm{Pic}}\nolimits (R) is not the trivial group, then we get an example.
Assume \mathcal{L} is locally free of rank 1 and consider the evaluation map
\mathcal{L} \otimes _{\mathcal{O}_ X} \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{L}, \mathcal{O}_ X) \longrightarrow \mathcal{O}_ X
Looking over an open covering trivialization \mathcal{L}, we see that this map is an isomorphism. Hence \mathcal{L} is invertible by Lemma 17.25.2.
Assume all stalks \mathcal{O}_{X, x} are local rings and \mathcal{L} invertible. In the proof of Lemma 17.25.2 we have seen that \mathcal{L}_ x is an invertible \mathcal{O}_{X, x}-module for all x \in X. Since \mathcal{O}_{X, x} is local, we see that \mathcal{L}_ x \cong \mathcal{O}_{X, x} (More on Algebra, Section 15.117). Since \mathcal{L} is of finite presentation by Lemma 17.25.2 we conclude that \mathcal{L} is locally free of rank 1 by Lemma 17.11.6.
\square
Lemma 17.25.5. Let (X, \mathcal{O}_ X) be a ringed space.
If \mathcal{L}, \mathcal{N} are invertible \mathcal{O}_ X-modules, then so is \mathcal{L} \otimes _{\mathcal{O}_ X} \mathcal{N}.
If \mathcal{L} is an invertible \mathcal{O}_ X-module, then so is \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{L}, \mathcal{O}_ X) and the evaluation map \mathcal{L} \otimes _{\mathcal{O}_ X} \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{L}, \mathcal{O}_ X) \to \mathcal{O}_ X is an isomorphism.
Proof.
Part (1) is clear from the definition and part (2) follows from Lemma 17.25.2 and its proof.
\square
Definition 17.25.6. Let (X, \mathcal{O}_ X) be a ringed space. Given an invertible sheaf \mathcal{L} on X and n \in \mathbf{Z} we define the nth tensor power \mathcal{L}^{\otimes n} of \mathcal{L} as the image of \mathcal{O}_ X under applying the equivalence \mathcal{F} \mapsto \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L} exactly n times.
This makes sense also for negative n as we've defined an invertible \mathcal{O}_ X-module as one for which tensoring is an equivalence. More explicitly, we have
\mathcal{L}^{\otimes n} = \left\{ \begin{matrix} \mathcal{O}_ X
& \text{if}
& n = 0
\\ \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{L}, \mathcal{O}_ X)
& \text{if}
& n = -1
\\ \mathcal{L} \otimes _{\mathcal{O}_ X} \ldots \otimes _{\mathcal{O}_ X} \mathcal{L}
& \text{if}
& n > 0
\\ \mathcal{L}^{\otimes -1} \otimes _{\mathcal{O}_ X} \ldots \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes -1}
& \text{if}
& n < -1
\end{matrix} \right.
see Lemma 17.25.5. With this definition we have canonical isomorphisms \mathcal{L}^{\otimes n} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes m} \to \mathcal{L}^{\otimes n + m}, and these isomorphisms satisfy a commutativity and an associativity constraint (formulation omitted).
Let (X, \mathcal{O}_ X) be a ringed space. We can define a \mathbf{Z}-graded ring structure on \bigoplus \Gamma (X, \mathcal{L}^{\otimes n}) by mapping s \in \Gamma (X, \mathcal{L}^{\otimes n}) and t \in \Gamma (X, \mathcal{L}^{\otimes m}) to the section corresponding to s \otimes t in \Gamma (X, \mathcal{L}^{\otimes n + m}). We omit the verification that this defines a commutative and associative ring with 1. However, by our conventions in Algebra, Section 10.56 a graded ring has no nonzero elements in negative degrees. This leads to the following definition.
Definition 17.25.7. Let (X, \mathcal{O}_ X) be a ringed space. Given an invertible sheaf \mathcal{L} on X we define the associated graded ring to be
\Gamma _*(X, \mathcal{L}) = \bigoplus \nolimits _{n \geq 0} \Gamma (X, \mathcal{L}^{\otimes n})
Given a sheaf of \mathcal{O}_ X-modules \mathcal{F} we set
\Gamma _*(X, \mathcal{L}, \mathcal{F}) = \bigoplus \nolimits _{n \in \mathbf{Z}} \Gamma (X, \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes n})
which we think of as a graded \Gamma _*(X, \mathcal{L})-module.
We often write simply \Gamma _*(\mathcal{L}) and \Gamma _*(\mathcal{F}) (although this is ambiguous if \mathcal{F} is invertible). The multiplication of \Gamma _*(\mathcal{L}) on \Gamma _*(\mathcal{F}) is defined using the isomorphisms above. If \gamma : \mathcal{F} \to \mathcal{G} is a \mathcal{O}_ X-module map, then we get an \Gamma _*(\mathcal{L})-module homomorphism \gamma : \Gamma _*(\mathcal{F}) \to \Gamma _*(\mathcal{G}). If \alpha : \mathcal{L} \to \mathcal{N} is an \mathcal{O}_ X-module map between invertible \mathcal{O}_ X-modules, then we obtain a graded ring homomorphism \Gamma _*(\mathcal{L}) \to \Gamma _*(\mathcal{N}). If f : (Y, \mathcal{O}_ Y) \to (X, \mathcal{O}_ X) is a morphism of ringed spaces and if \mathcal{L} is invertible on X, then we get an invertible sheaf f^*\mathcal{L} on Y (Lemma 17.25.3) and an induced homomorphism of graded rings
f^* : \Gamma _*(X, \mathcal{L}) \longrightarrow \Gamma _*(Y, f^*\mathcal{L})
Furthermore, there are some compatibilities between the constructions above whose statements we omit.
Lemma 17.25.8. Let (X, \mathcal{O}_ X) be a ringed space. There exists a set of invertible modules \{ \mathcal{L}_ i\} _{i \in I} such that each invertible module on X is isomorphic to exactly one of the \mathcal{L}_ i.
Proof.
Recall that any invertible \mathcal{O}_ X-module is locally a direct summand of a finite free \mathcal{O}_ X-module, see Lemma 17.25.2. For each open covering \mathcal{U} : X = \bigcup _{j \in J} U_ j and map r : J \to \mathbf{N} consider the sheaves of \mathcal{O}_ X-modules \mathcal{F} such that \mathcal{F}_ j = \mathcal{F}|_{U_ j} is a direct summand of \mathcal{O}_{U_ j}^{\oplus r(j)}. The collection of isomorphism classes of \mathcal{F}_ j is a set, because \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ U}(\mathcal{O}_ U^{\oplus r}, \mathcal{O}_ U^{\oplus r}) is a set. The sheaf \mathcal{F} is gotten by glueing \mathcal{F}_ j, see Sheaves, Section 6.33. Note that the collection of all glueing data forms a set. The collection of all coverings \mathcal{U} : X = \bigcup _{j \in J} U_ i where J \to \mathcal{P}(X), j \mapsto U_ j is injective forms a set as well. For each covering there is a set of maps r : J \to \mathbf{N}. Hence the collection of all \mathcal{F} forms a set.
\square
This lemma says roughly speaking that the collection of isomorphism classes of invertible sheaves forms a set. Lemma 17.25.5 says that tensor product defines the structure of an abelian group on this set.
Definition 17.25.9. Let (X, \mathcal{O}_ X) be a ringed space. The Picard group \mathop{\mathrm{Pic}}\nolimits (X) of X is the abelian group whose elements are isomorphism classes of invertible \mathcal{O}_ X-modules, with addition corresponding to tensor product.
Lemma 17.25.10.slogan Let X be a ringed space. Assume that each stalk \mathcal{O}_{X, x} is a local ring with maximal ideal \mathfrak m_ x. Let \mathcal{L} be an invertible \mathcal{O}_ X-module. For any section s \in \Gamma (X, \mathcal{L}) the set
X_ s = \{ x \in X \mid \text{image }s \not\in \mathfrak m_ x\mathcal{L}_ x\}
is open in X. The map s : \mathcal{O}_{X_ s} \to \mathcal{L}|_{X_ s} is an isomorphism, and there exists a section s' of \mathcal{L}^{\otimes -1} over X_ s such that s' (s|_{X_ s}) = 1.
Proof.
Suppose x \in X_ s. We have an isomorphism
\mathcal{L}_ x \otimes _{\mathcal{O}_{X, x}} (\mathcal{L}^{\otimes -1})_ x \longrightarrow \mathcal{O}_{X, x}
by Lemma 17.25.5. Both \mathcal{L}_ x and (\mathcal{L}^{\otimes -1})_ x are free \mathcal{O}_{X, x}-modules of rank 1. We conclude from Algebra, Nakayama's Lemma 10.20.1 that s_ x is a basis for \mathcal{L}_ x. Hence there exists a basis element t_ x \in (\mathcal{L}^{\otimes -1})_ x such that s_ x \otimes t_ x maps to 1. Choose an open neighbourhood U of x such that t_ x comes from a section t of \mathcal{L}^{\otimes -1} over U and such that s \otimes t maps to 1 \in \mathcal{O}_ X(U). Clearly, for every x' \in U we see that s generates the module \mathcal{L}_{x'}. Hence U \subset X_ s. This proves that X_ s is open. Moreover, the section t constructed over U above is unique, and hence these glue to give the section s' of the lemma.
\square
Comments (0)