Lemma 17.25.2. Let (X, \mathcal{O}_ X) be a ringed space. Let \mathcal{L} be an \mathcal{O}_ X-module. Equivalent are
\mathcal{L} is invertible, and
there exists an \mathcal{O}_ X-module \mathcal{N} such that \mathcal{L} \otimes _{\mathcal{O}_ X} \mathcal{N} \cong \mathcal{O}_ X.
In this case \mathcal{L} is locally a direct summand of a finite free \mathcal{O}_ X-module and the module \mathcal{N} in (2) is isomorphic to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{L}, \mathcal{O}_ X).
Proof.
Assume (1). Then the functor - \otimes _{\mathcal{O}_ X} \mathcal{L} is essentially surjective, hence there exists an \mathcal{O}_ X-module \mathcal{N} as in (2). If (2) holds, then the functor - \otimes _{\mathcal{O}_ X} \mathcal{N} is a quasi-inverse to the functor - \otimes _{\mathcal{O}_ X} \mathcal{L} and we see that (1) holds.
Assume (1) and (2) hold. Denote \psi : \mathcal{L} \otimes _{\mathcal{O}_ X} \mathcal{N} \to \mathcal{O}_ X the given isomorphism. Let x \in X. Choose an open neighbourhood U an integer n \geq 1 and sections s_ i \in \mathcal{L}(U), t_ i \in \mathcal{N}(U) such that \psi (\sum s_ i \otimes t_ i) = 1. Consider the isomorphisms
\mathcal{L}|_ U \to \mathcal{L}|_ U \otimes _{\mathcal{O}_ U} \mathcal{L}|_ U \otimes _{\mathcal{O}_ U} \mathcal{N}|_ U \to \mathcal{L}|_ U
where the first arrow sends s to \sum s_ i \otimes s \otimes t_ i and the second arrow sends s \otimes s' \otimes t to \psi (s' \otimes t)s. We conclude that s \mapsto \sum \psi (s \otimes t_ i)s_ i is an automorphism of \mathcal{L}|_ U. This automorphism factors as
\mathcal{L}|_ U \to \mathcal{O}_ U^{\oplus n} \to \mathcal{L}|_ U
where the first arrow is given by s \mapsto (\psi (s \otimes t_1), \ldots , \psi (s \otimes t_ n)) and the second arrow by (a_1, \ldots , a_ n) \mapsto \sum a_ i s_ i. In this way we conclude that \mathcal{L}|_ U is a direct summand of a finite free \mathcal{O}_ U-module.
Assume (1) and (2) hold. Consider the evaluation map
\mathcal{L} \otimes _{\mathcal{O}_ X} \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{L}, \mathcal{O}_ X) \longrightarrow \mathcal{O}_ X
To finish the proof of the lemma we will show this is an isomorphism by checking it induces isomorphisms on stalks. Let x \in X. Since we know (by the previous paragraph) that \mathcal{L} is a finitely presented \mathcal{O}_ X-module we can use Lemma 17.22.4 to see that it suffices to show that
\mathcal{L}_ x \otimes _{\mathcal{O}_{X, x}} \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_{X, x}}(\mathcal{L}_ x, \mathcal{O}_{X, x}) \longrightarrow \mathcal{O}_{X, x}
is an isomorphism. Since \mathcal{L}_ x \otimes _{\mathcal{O}_{X, x}} \mathcal{N}_ x = (\mathcal{L} \otimes _{\mathcal{O}_ X} \mathcal{N})_ x = \mathcal{O}_{X, x} (Lemma 17.16.1) the desired result follows from More on Algebra, Lemma 15.117.2.
\square
Comments (2)
Comment #1705 by Yogesh More on
Comment #1750 by Johan on