The Stacks project

Lemma 17.22.4. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}$, $\mathcal{G}$ be $\mathcal{O}_ X$-modules. If $\mathcal{F}$ is of finite type then the canonical map

\[ \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G})_ x \to \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_{X, x}}(\mathcal{F}_ x, \mathcal{G}_ x) \]

is injective. If $\mathcal{F}$ is finitely presented, this canonical morphism is an isomorphism.

Proof. The map sends the equivalence class of $(U, \varphi )$ in $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G})_ x$, where $x \in U \subset X$ is open and $\varphi \in \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ U}(\mathcal{F}|_ U, \mathcal{G}|_ U)$, to the the induced map on stalks at $x$, namely $\varphi _ x : \mathcal{F}_ x \to \mathcal{G}_ x$.

Suppose $\mathcal{F}$ is of finite type. Pick a representative $(U, \varphi )$ of an element $\sigma $ in the kernel of the map, i.e., $\varphi _ x = 0$. Shrinking $U$ if necessary, choose sections $s^1, \ldots , s^ n \in \mathcal{F}(U)$ generating $\mathcal{F}|_ U$. Since $\varphi _ x(s^ i_ x) = 0$ and we are dealing with a finite number of sections, we can find an open neighborhood $V \subset U$ of $x$ such that $\varphi _ V(s^ i|_ V)=0$ for all $i = 1, \ldots , n$. Since $s^ i|_ V$, $i = 1, \ldots , n$ generate $\mathcal{F}|_ V$ this means that $\varphi |_ V = 0$. Since $(U, \varphi )$ is equivalent to $(V, \varphi |_ V)$ we conclude $\sigma = 0$ and injectivity of the map follows.

Next, assume $\mathcal{F}$ is finitely presented. By localizing on $X$ we may assume that $\mathcal{F}$ has a presentation

\[ \bigoplus \nolimits _{j = 1, \ldots , m} \mathcal{O}_ X \longrightarrow \bigoplus \nolimits _{i = 1, \ldots , n} \mathcal{O}_ X \to \mathcal{F} \to 0. \]

By Lemma 17.22.2 this gives an exact sequence $ 0 \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G}) \to \bigoplus \nolimits _{i = 1, \ldots , n} \mathcal{G} \longrightarrow \bigoplus \nolimits _{j = 1, \ldots , m} \mathcal{G}. $ Taking stalks we get an exact sequence $ 0 \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G})_ x \to \bigoplus \nolimits _{i = 1, \ldots , n} \mathcal{G}_ x \longrightarrow \bigoplus \nolimits _{j = 1, \ldots , m} \mathcal{G}_ x $ and the result follows since $\mathcal{F}_ x$ sits in an exact sequence $ \bigoplus \nolimits _{j = 1, \ldots , m} \mathcal{O}_{X, x} \longrightarrow \bigoplus \nolimits _{i = 1, \ldots , n} \mathcal{O}_{X, x} \to \mathcal{F}_ x \to 0 $ which induces the exact sequence $ 0 \to \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_{X, x}}(\mathcal{F}_ x, \mathcal{G}_ x) \to \bigoplus \nolimits _{i = 1, \ldots , n} \mathcal{G}_ x \longrightarrow \bigoplus \nolimits _{j = 1, \ldots , m} \mathcal{G}_ x $ which is the same as the one above. $\square$


Comments (0)

There are also:

  • 1 comment(s) on Section 17.22: Internal Hom

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01CP. Beware of the difference between the letter 'O' and the digit '0'.