Lemma 17.22.3. Let $X$ be a topological space. Let $\mathcal{O}_1 \to \mathcal{O}_2$ be a homomorphism of sheaves of rings. Then we have
\[ \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_1}(\mathcal{F}_{\mathcal{O}_1}, \mathcal{G}) = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_2}(\mathcal{F}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_1}(\mathcal{O}_2, \mathcal{G})) \]
bifunctorially in $\mathcal{F} \in \textit{Mod}(\mathcal{O}_2)$ and $\mathcal{G} \in \textit{Mod}(\mathcal{O}_1)$.
Comments (0)
There are also: