Lemma 17.22.5. Let $f : (X, \mathcal{O}_ X) \to (Y, \mathcal{O}_ Y)$ be a morphism of ringed spaces. Let $\mathcal{F}$, $\mathcal{G}$ be $\mathcal{O}_ Y$-modules. If $\mathcal{F}$ is finitely presented and $f$ is flat, then the canonical map

\[ f^*\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(\mathcal{F}, \mathcal{G}) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(f^*\mathcal{F}, f^*\mathcal{G}) \]

is an isomorphism.

**Proof.**
Note that $f^*\mathcal{F}$ is also finitely presented (Lemma 17.11.4). Let $x \in X$ map to $y \in Y$. Looking at the stalks at $x$ we get an isomorphism by Lemma 17.22.4 and More on Algebra, Lemma 15.65.4 to see that in this case $\mathop{\mathrm{Hom}}\nolimits $ commutes with base change by $\mathcal{O}_{Y, y} \to \mathcal{O}_{X, x}$. Second proof: use the exact same argument as given in the proof of Lemma 17.22.4.
$\square$

## Comments (2)

Comment #2181 by JuanPablo on

Comment #2208 by Johan on