Lemma 17.22.4. Let $f : (X, \mathcal{O}_ X) \to (Y, \mathcal{O}_ Y)$ be a morphism of ringed spaces. Let $\mathcal{F}$, $\mathcal{G}$ be $\mathcal{O}_ Y$-modules. If $\mathcal{F}$ is finitely presented and $f$ is flat, then the canonical map

$f^*\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(\mathcal{F}, \mathcal{G}) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(f^*\mathcal{F}, f^*\mathcal{G})$

is an isomorphism.

Proof. Note that $f^*\mathcal{F}$ is also finitely presented (Lemma 17.11.4). Let $x \in X$ map to $y \in Y$. Looking at the stalks at $x$ we get an isomorphism by Lemma 17.22.3 and More on Algebra, Lemma 15.64.4 to see that in this case $\mathop{\mathrm{Hom}}\nolimits$ commutes with base change by $\mathcal{O}_{Y, y} \to \mathcal{O}_{X, x}$. Second proof: use the exact same argument as given in the proof of Lemma 17.22.3. $\square$

Comment #2181 by JuanPablo on

In the statement, the morphism of ringed spaces

$f : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ should be flat as in Definition 17.18.3 (tag 08KT).

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).