Lemma 17.25.8. Let $(X, \mathcal{O}_ X)$ be a ringed space. There exists a set of invertible modules $\{ \mathcal{L}_ i\} _{i \in I}$ such that each invertible module on $X$ is isomorphic to exactly one of the $\mathcal{L}_ i$.
Proof. Recall that any invertible $\mathcal{O}_ X$-module is locally a direct summand of a finite free $\mathcal{O}_ X$-module, see Lemma 17.25.2. For each open covering $\mathcal{U} : X = \bigcup _{j \in J} U_ j$ and map $r : J \to \mathbf{N}$ consider the sheaves of $\mathcal{O}_ X$-modules $\mathcal{F}$ such that $\mathcal{F}_ j = \mathcal{F}|_{U_ j}$ is a direct summand of $\mathcal{O}_{U_ j}^{\oplus r(j)}$. The collection of isomorphism classes of $\mathcal{F}_ j$ is a set, because $\mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ U}(\mathcal{O}_ U^{\oplus r}, \mathcal{O}_ U^{\oplus r})$ is a set. The sheaf $\mathcal{F}$ is gotten by glueing $\mathcal{F}_ j$, see Sheaves, Section 6.33. Note that the collection of all glueing data forms a set. The collection of all coverings $\mathcal{U} : X = \bigcup _{j \in J} U_ i$ where $J \to \mathcal{P}(X)$, $j \mapsto U_ j$ is injective forms a set as well. For each covering there is a set of maps $r : J \to \mathbf{N}$. Hence the collection of all $\mathcal{F}$ forms a set. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)