Definition 17.25.7. Let $(X, \mathcal{O}_ X)$ be a ringed space. Given an invertible sheaf $\mathcal{L}$ on $X$ we define the associated graded ring to be
\[ \Gamma _*(X, \mathcal{L}) = \bigoplus \nolimits _{n \geq 0} \Gamma (X, \mathcal{L}^{\otimes n}) \]
Given a sheaf of $\mathcal{O}_ X$-modules $\mathcal{F}$ we set
\[ \Gamma _*(X, \mathcal{L}, \mathcal{F}) = \bigoplus \nolimits _{n \in \mathbf{Z}} \Gamma (X, \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes n}) \]
which we think of as a graded $\Gamma _*(X, \mathcal{L})$-module.
Comments (4)
Comment #11 by Pieter Belmans on
Comment #12 by Pieter Belmans on
Comment #13 by Pieter Belmans on
Comment #20 by Johan on