Lemma 17.25.5. Let (X, \mathcal{O}_ X) be a ringed space.
If \mathcal{L}, \mathcal{N} are invertible \mathcal{O}_ X-modules, then so is \mathcal{L} \otimes _{\mathcal{O}_ X} \mathcal{N}.
If \mathcal{L} is an invertible \mathcal{O}_ X-module, then so is \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{L}, \mathcal{O}_ X) and the evaluation map \mathcal{L} \otimes _{\mathcal{O}_ X} \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{L}, \mathcal{O}_ X) \to \mathcal{O}_ X is an isomorphism.
Comments (3)
Comment #9 by Pieter Belmans on
Comment #10 by Pieter Belmans on
Comment #19 by Johan on