for every quasi-coherent sheaf $\mathcal{F}$ on $X$ the sum of the images of the canonical maps
\[ \Gamma (X, \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes n}) \otimes _{\mathbf{Z}} \mathcal{L}^{\otimes -n} \longrightarrow \mathcal{F} \]with $n \geq 1$ equals $\mathcal{F}$,
Comments (0)