Lemma 34.4.14. Let $S$ be a scheme. Let $\mathit{Sch}_{\acute{e}tale}$ be a big étale site containing $S$. The inclusion functor $S_{\acute{e}tale}\to (\mathit{Sch}/S)_{\acute{e}tale}$ satisfies the hypotheses of Sites, Lemma 7.21.8 and hence induces a morphism of sites

and a morphism of topoi

such that $\pi _ S \circ i_ S = \text{id}$. Moreover, $i_ S = i_{\text{id}_ S}$ with $i_{\text{id}_ S}$ as in Lemma 34.4.13. In particular the functor $i_ S^{-1} = \pi _{S, *}$ is described by the rule $i_ S^{-1}(\mathcal{G})(U/S) = \mathcal{G}(U/S)$.

## Comments (0)