Processing math: 100%

The Stacks project

Lemma 34.12.2. Let \tau \in \{ Zariski, {\acute{e}tale}, smooth, syntomic, fppf\} . Suppose given big sites \mathit{Sch}_\tau and \mathit{Sch}'_\tau . Assume that \mathit{Sch}_\tau is contained in \mathit{Sch}'_\tau . The inclusion functor \mathit{Sch}_\tau \to \mathit{Sch}'_\tau satisfies the assumptions of Sites, Lemma 7.21.8. There are morphisms of topoi

\begin{eqnarray*} g : \mathop{\mathit{Sh}}\nolimits (\mathit{Sch}_\tau ) & \longrightarrow & \mathop{\mathit{Sh}}\nolimits (\mathit{Sch}'_\tau ) \\ f : \mathop{\mathit{Sh}}\nolimits (\mathit{Sch}'_\tau ) & \longrightarrow & \mathop{\mathit{Sh}}\nolimits (\mathit{Sch}_\tau ) \end{eqnarray*}

such that f \circ g \cong \text{id}. For any object S of \mathit{Sch}_\tau the inclusion functor (\mathit{Sch}/S)_\tau \to (\mathit{Sch}'/S)_\tau satisfies the assumptions of Sites, Lemma 7.21.8 also. Hence similarly we obtain morphisms

\begin{eqnarray*} g : \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/S)_\tau ) & \longrightarrow & \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}'/S)_\tau ) \\ f : \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}'/S)_\tau ) & \longrightarrow & \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/S)_\tau ) \end{eqnarray*}

with f \circ g \cong \text{id}.

Proof. Assumptions (b), (c), and (e) of Sites, Lemma 7.21.8 are immediate for the functors \mathit{Sch}_\tau \to \mathit{Sch}'_\tau and (\mathit{Sch}/S)_\tau \to (\mathit{Sch}'/S)_\tau . Property (a) holds by Lemma 34.3.6, 34.4.7, 34.5.7, 34.6.7, or 34.7.7. Property (d) holds because fibre products in the categories \mathit{Sch}_\tau , \mathit{Sch}'_\tau exist and are compatible with fibre products in the category of schemes. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.