Lemma 34.12.2. Let \tau \in \{ Zariski, {\acute{e}tale}, smooth, syntomic, fppf\} . Suppose given big sites \mathit{Sch}_\tau and \mathit{Sch}'_\tau . Assume that \mathit{Sch}_\tau is contained in \mathit{Sch}'_\tau . The inclusion functor \mathit{Sch}_\tau \to \mathit{Sch}'_\tau satisfies the assumptions of Sites, Lemma 7.21.8. There are morphisms of topoi
\begin{eqnarray*} g : \mathop{\mathit{Sh}}\nolimits (\mathit{Sch}_\tau ) & \longrightarrow & \mathop{\mathit{Sh}}\nolimits (\mathit{Sch}'_\tau ) \\ f : \mathop{\mathit{Sh}}\nolimits (\mathit{Sch}'_\tau ) & \longrightarrow & \mathop{\mathit{Sh}}\nolimits (\mathit{Sch}_\tau ) \end{eqnarray*}
such that f \circ g \cong \text{id}. For any object S of \mathit{Sch}_\tau the inclusion functor (\mathit{Sch}/S)_\tau \to (\mathit{Sch}'/S)_\tau satisfies the assumptions of Sites, Lemma 7.21.8 also. Hence similarly we obtain morphisms
\begin{eqnarray*} g : \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/S)_\tau ) & \longrightarrow & \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}'/S)_\tau ) \\ f : \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}'/S)_\tau ) & \longrightarrow & \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/S)_\tau ) \end{eqnarray*}
with f \circ g \cong \text{id}.
Proof.
Assumptions (b), (c), and (e) of Sites, Lemma 7.21.8 are immediate for the functors \mathit{Sch}_\tau \to \mathit{Sch}'_\tau and (\mathit{Sch}/S)_\tau \to (\mathit{Sch}'/S)_\tau . Property (a) holds by Lemma 34.3.6, 34.4.7, 34.5.7, 34.6.7, or 34.7.7. Property (d) holds because fibre products in the categories \mathit{Sch}_\tau , \mathit{Sch}'_\tau exist and are compatible with fibre products in the category of schemes.
\square
Comments (0)