Definition 35.34.3. Let $S$ be a scheme. Let $\{ X_ i \to S\} _{i \in I}$ be a family of morphisms with target $S$.

1. A descent datum $(V_ i, \varphi _{ij})$ relative to the family $\{ X_ i \to S\}$ is given by a scheme $V_ i$ over $X_ i$ for each $i \in I$, an isomorphism $\varphi _{ij} : V_ i \times _ S X_ j \to X_ i \times _ S V_ j$ of schemes over $X_ i \times _ S X_ j$ for each pair $(i, j) \in I^2$ such that for every triple of indices $(i, j, k) \in I^3$ the diagram

$\xymatrix{ V_ i \times _ S X_ j \times _ S X_ k \ar[rd]^{\text{pr}_{01}^*\varphi _{ij}} \ar[rr]_{\text{pr}_{02}^*\varphi _{ik}} & & X_ i \times _ S X_ j \times _ S V_ k\\ & X_ i \times _ S V_ j \times _ S X_ k \ar[ru]^{\text{pr}_{12}^*\varphi _{jk}} }$

of schemes over $X_ i \times _ S X_ j \times _ S X_ k$ commutes (with obvious notation).

2. A morphism $\psi : (V_ i, \varphi _{ij}) \to (V'_ i, \varphi '_{ij})$ of descent data is given by a family $\psi = (\psi _ i)_{i \in I}$ of morphisms of $X_ i$-schemes $\psi _ i : V_ i \to V'_ i$ such that all the diagrams

$\xymatrix{ V_ i \times _ S X_ j \ar[r]_{\varphi _{ij}} \ar[d]_{\psi _ i \times \text{id}} & X_ i \times _ S V_ j \ar[d]^{\text{id} \times \psi _ j} \\ V'_ i \times _ S X_ j \ar[r]^{\varphi '_{ij}} & X_ i \times _ S V'_ j }$

commute.

There are also:

• 3 comment(s) on Section 35.34: Descent data for schemes over schemes

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 023W. Beware of the difference between the letter 'O' and the digit '0'.