Lemma 35.34.5. Let $S$ be a scheme. Let $\{ X_ i \to S\} _{i \in I}$ be a family of morphisms with target $S$. Set $X = \coprod _{i \in I} X_ i$, and consider it as an $S$-scheme. There is a canonical equivalence of categories

$\begin{matrix} \text{category of descent data } \\ \text{relative to the family } \{ X_ i \to S\} _{i \in I} \end{matrix} \longrightarrow \begin{matrix} \text{ category of descent data} \\ \text{ relative to } X/S \end{matrix}$

which maps $(V_ i, \varphi _{ij})$ to $(V, \varphi )$ with $V = \coprod _{i\in I} V_ i$ and $\varphi = \coprod \varphi _{ij}$.

Proof. Observe that $X \times _ S X = \coprod _{ij} X_ i \times _ S X_ j$ and similarly for higher fibre products. Giving a morphism $V \to X$ is exactly the same as giving a family $V_ i \to X_ i$. And giving a descent datum $\varphi$ is exactly the same as giving a family $\varphi _{ij}$. $\square$

There are also:

• 3 comment(s) on Section 35.34: Descent data for schemes over schemes

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 023X. Beware of the difference between the letter 'O' and the digit '0'.