The Stacks project

Proof. Let $g : V'/U \to V/U$ be as above and similarly $g' : V''/U \to V'/U$ be morphisms in $\mathcal{C}/U$. So $f' = f \circ g$ and $f'' = f' \circ g' = f \circ g \circ g'$. Let $\phi \in \mathop{Mor}\nolimits _{\mathcal{S}_ V}(f^\ast x, f^\ast y)$. Then we have

\begin{eqnarray*} & & (\alpha _{g \circ g', f})_ y^{-1} \circ (g \circ g')^\ast \phi \circ (\alpha _{g \circ g', f})_ x \\ & = & (\alpha _{g \circ g', f})_ y^{-1} \circ (\alpha _{g', g})_{f^*y}^{-1} \circ (g')^*g^\ast \phi \circ (\alpha _{g', g})_{f^*x} \circ (\alpha _{g \circ g', f})_ x \\ & = & (\alpha _{g', f'})_ y^{-1} \circ (g')^*(\alpha _{g, f})_ y^{-1} \circ (g')^* g^\ast \phi \circ (g')^*(\alpha _{g, f})_ x \circ (\alpha _{g', f'})_ x \\ & = & (\alpha _{g', f'})_ y^{-1} \circ (g')^*\Big( (\alpha _{g, f})_ y^{-1} \circ g^\ast \phi \circ (\alpha _{g, f})_ x \Big) \circ (\alpha _{g', f'})_ x \end{eqnarray*}

which is what we want, namely $\phi |_{V''} = (\phi |_{V'})|_{V''}$. The first equality holds because $\alpha _{g', g}$ is a transformation of functors, and hence

\[ \xymatrix{ (g \circ g')^*f^*x \ar[rr]_{(g \circ g')^\ast \phi } \ar[d]_{(\alpha _{g', g})_{f^*x}} & & (g \circ g')^*f^*y \ar[d]^{(\alpha _{g', g})_{f^*y}} \\ (g')^*g^*f^*x \ar[rr]^{(g')^*g^\ast \phi } & & (g')^*g^*f^*y } \]

commutes. The second equality holds because of property (d) of a pseudo functor since $f' = f \circ g$ (see Categories, Definition 4.29.5). The last equality follows from the fact that $(g')^*$ is a functor. $\square$

Comments (0)

There are also:

  • 4 comment(s) on Section 8.2: Presheaves of morphisms associated to fibred categories

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 026A. Beware of the difference between the letter 'O' and the digit '0'.