Definition 111.30.6. Let \mathcal{A} be an abelian category. Let \alpha : K^\bullet \to L^\bullet be a morphism of complexes of \text{Fil}(\mathcal{A}). We say that \alpha is a filtered quasi-isomorphism if for each p \in \mathbf{Z} the morphism \text{gr}^ p(K^\bullet ) \to \text{gr}^ p(L^\bullet ) is a quasi-isomorphism.
Comments (0)