Exercise 111.30.13. Let \mathcal{A} be an abelian category. Consider a solid diagram
\xymatrix{ K^\bullet \ar[r]_\alpha \ar[d]_\gamma & L^\bullet \ar@{-->}[dl]^{\beta _ i} \\ I^\bullet }
of complexes of \text{Fil}^ f(\mathcal{A}). Assume K^\bullet , L^\bullet and I^\bullet bounded below and each I^ n a filtered injective object. Also assume \alpha a filtered quasi-isomorphism. Any two morphisms \beta _1, \beta _2 making the diagram commute up to homotopy are homotopic.
Comments (0)