Exercise 111.34.5. Consider the morphism of schemes
\[ \pi : X = \mathop{\mathrm{Spec}}(\mathbf{C}[x, y, t] /(1 + t x^3 + t^2 y^3)) \longrightarrow S = \mathop{\mathrm{Spec}}(\mathbf{C}[t]) \]
Show there does not exist a nonempty open $U \subset S$ and a morphism $\sigma : U \to X$ such that $\pi \circ \sigma = \text{id}_ U$.
Comments (0)
There are also: