Exercise 111.34.6. Consider the schemes
X = \mathop{\mathrm{Spec}}(\mathbf{C}[\{ x_ i\} _{i = 1}^{8}, s, t] /(1 + s x_1^3 + s^2 x_2^3 + t x_3^3 + st x_4^3 + s^2t x_5^3 + t^2 x_6^3 + st^2 x_7^3 + s^2t^2 x_8^3))
and
S = \mathop{\mathrm{Spec}}(\mathbf{C}[s, t])
and the morphism of schemes
\pi : X \longrightarrow S
Show there does not exist a nonempty open U \subset S and a morphism \sigma : U \to X such that \pi \circ \sigma = \text{id}_ U.
Comments (0)
There are also: