Exercise 111.1.2. Find an example of a non Noetherian ring $R$ such that every finitely generated ideal of $R$ is finitely presented as an $R$-module. (A ring is said to be coherent if the last property holds.)
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: