Remark 111.29.4. Let h \in {\mathbf Z}[y] be a monic polynomial of degree d. Then:
The map A = {\mathbf Z}[x] \to B ={\mathbf Z}[y], x \mapsto h is finite locally free of rank d.
For all primes p the map A_ p = {\mathbf F}_ p[x]\to B_ p = {\mathbf F}_ p[y], y \mapsto h(y) \bmod p is finite locally free of rank d.
Comments (0)