Example 5.11.3. Let $X = [0, 1]$ be the unit interval with the following topology: The sets $[0, 1]$, $(1 - 1/n, 1]$ for $n \in \mathbf{N}$, and $\emptyset $ are open. So the closed sets are $\emptyset $, $\{ 0\} $, $[0, 1 - 1/n]$ for $n > 1$ and $[0, 1]$. This is clearly a Noetherian topological space. But the irreducible closed subset $Y = \{ 0\} $ has infinite codimension $\text{codim}(Y, X) = \infty $. To see this we just remark that all the closed sets $[0, 1 - 1/n]$ are irreducible.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: