Lemma 5.20.4. Let $X$ be locally Noetherian, sober and catenary. Then any point has an open neighbourhood $U \subset X$ which has a dimension function.
Proof. We will use repeatedly that an open subspace of a catenary space is catenary, see Lemma 5.11.5 and that a Noetherian topological space has finitely many irreducible components, see Lemma 5.9.2. In the proof of Lemma 5.20.3 we saw how to construct such a function. Namely, we first replace $X$ by a Noetherian open neighbourhood of $x$. Next, we let $Z_1, \ldots , Z_ r \subset X$ be the irreducible components of $X$. Let
be the decomposition into irreducible components. We replace $X$ by
so that we may assume $x \in Z_ i$ for all $i$ and $x \in Z_{ijk}$ for all $i, j, k$. For $y \in X$ choose any $i$ such that $y \in Z_ i$ and set
We claim this is a dimension function. First we show that it is well defined, i.e., independent of the choice of $i$. Namely, suppose that $y \in Z_{ijk}$ for some $i, j, k$. Then we have (using Lemma 5.11.6)
which is symmetric in $i$ and $j$. We omit the proof that it is a dimension function. $\square$
Comments (0)