The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

Lemma 10.32.2. Let $R$ be a ring. Let $S \subset R$ be a multiplicative subset. Assume the image of the map $\mathop{\mathrm{Spec}}(S^{-1}R) \to \mathop{\mathrm{Spec}}(R)$ is closed. If $R$ is Noetherian, or $\mathop{\mathrm{Spec}}(R)$ is a Noetherian topological space, or $S$ is finitely generated as a monoid, then $R \cong S^{-1}R \times R'$ for some ring $R'$.

Proof. By Lemma 10.32.1 we have $S^{-1}R \cong R/I$ for some ideal $I \subset R$. By Lemma 10.23.3 it suffices to show that $V(I)$ is open. If $R$ is Noetherian then $\mathop{\mathrm{Spec}}(R)$ is a Noetherian topological space, see Lemma 10.30.5. If $\mathop{\mathrm{Spec}}(R)$ is a Noetherian topological space, then the complement $\mathop{\mathrm{Spec}}(R) \setminus V(I)$ is quasi-compact, see Topology, Lemma 5.12.13. Hence there exist finitely many $f_1, \ldots , f_ n \in I$ such that $V(I) = V(f_1, \ldots , f_ n)$. Since each $f_ i$ maps to zero in $S^{-1}R$ there exists a $g \in S$ such that $gf_ i = 0$ for $i = 1, \ldots , n$. Hence $D(g) = V(I)$ as desired. In case $S$ is finitely generated as a monoid, say $S$ is generated by $g_1, \ldots , g_ m$, then $S^{-1}R \cong R_{g_1 \ldots g_ m}$ and we conclude that $V(I) = D(g_1 \ldots g_ m)$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02JI. Beware of the difference between the letter 'O' and the digit '0'.