Lemma 10.36.13. Let $R \to S$ and $R \to R'$ be ring maps. Set $S' = R' \otimes _ R S$.
If $R \to S$ is integral so is $R' \to S'$.
If $R \to S$ is finite so is $R' \to S'$.
Integrality and finiteness are preserved under base change.
Lemma 10.36.13. Let $R \to S$ and $R \to R'$ be ring maps. Set $S' = R' \otimes _ R S$.
If $R \to S$ is integral so is $R' \to S'$.
If $R \to S$ is finite so is $R' \to S'$.
Proof. We prove (1). Let $s_ i \in S$ be generators for $S$ over $R$. Each of these satisfies a monic polynomial equation $P_ i$ over $R$. Hence the elements $1 \otimes s_ i \in S'$ generate $S'$ over $R'$ and satisfy the corresponding polynomial $P_ i'$ over $R'$. Since these elements generate $S'$ over $R'$ we see that $S'$ is integral over $R'$. Proof of (2) omitted. $\square$
Comments (1)
Comment #1092 by Alex Youcis on
There are also: