Lemma 35.20.2. The property $\mathcal{P}(f) =$“$f$ is quasi-separated” is fpqc local on the base.

Proof. Any base change of a quasi-separated morphism is quasi-separated, see Schemes, Lemma 26.21.12. Being quasi-separated is Zariski local on the base (from the definition or by Schemes, Lemma 26.21.6). Finally, let $S' \to S$ be a flat surjective morphism of affine schemes, and let $f : X \to S$ be a morphism. Assume that the base change $f' : X' \to S'$ is quasi-separated. This means that $\Delta ' : X' \to X'\times _{S'} X'$ is quasi-compact. Note that $\Delta '$ is the base change of $\Delta : X \to X \times _ S X$ via $S' \to S$. By Lemma 35.20.1 this implies $\Delta$ is quasi-compact, and hence $f$ is quasi-separated. Therefore Lemma 35.19.4 applies and we win. $\square$

There are also:

• 2 comment(s) on Section 35.20: Properties of morphisms local in the fpqc topology on the target

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).