Lemma 10.52.14. Let A \to B \to C be flat local homomorphisms of local rings. Then
\text{length}_ B(B/\mathfrak m_ A B) \text{length}_ C(C/\mathfrak m_ B C) = \text{length}_ C(C/\mathfrak m_ A C)
Lemma 10.52.14. Let A \to B \to C be flat local homomorphisms of local rings. Then
Proof. Follows from Lemma 10.52.13 applied to the ring map B \to C and the B-module M = B/\mathfrak m_ A B \square
Comments (0)
There are also: