Lemma 10.52.14. Let $A \to B \to C$ be flat local homomorphisms of local rings. Then
\[ \text{length}_ B(B/\mathfrak m_ A B) \text{length}_ C(C/\mathfrak m_ B C) = \text{length}_ C(C/\mathfrak m_ A C) \]
Lemma 10.52.14. Let $A \to B \to C$ be flat local homomorphisms of local rings. Then
Proof. Follows from Lemma 10.52.13 applied to the ring map $B \to C$ and the $B$-module $M = B/\mathfrak m_ A B$ $\square$
Comments (0)
There are also: