Lemma 42.38.5. Let (S, \delta ) be as in Situation 42.7.1. Let X, Y be locally of finite type over S. Let \mathcal{E} be a finite locally free sheaf of rank r on Y. Let f : X \to Y be a flat morphism of relative dimension r. Let \alpha be a k-cycle on Y. Then
f^*(c_ j(\mathcal{E}) \cap \alpha ) = c_ j(f^*\mathcal{E}) \cap f^*\alpha
Proof. Write \alpha _ j = c_ j(\mathcal{E}) \cap \alpha , so \alpha _0 = \alpha . By Lemma 42.38.2 we have
\sum \nolimits _{i = 0}^ r (-1)^ i c_1(\mathcal{O}_ P(1))^ i \cap \pi ^*(\alpha _{r - i}) = 0
in the chow group of the projective bundle (\pi : P \to Y, \mathcal{O}_ P(1)) associated to \mathcal{E}. Consider the fibre product diagram
\xymatrix{ P_ X = \mathbf{P}(f^*\mathcal{E}) \ar[r]_-{f'} \ar[d]_{\pi _ X} & P \ar[d]^\pi \\ X \ar[r]^ f & Y }
Note that \mathcal{O}_{P_ X}(1) is the pullback of \mathcal{O}_ P(1). Apply flat pullback (f')^* (Lemma 42.20.2) to the displayed equation above. By Lemmas 42.26.2 and 42.14.3 we see that
\sum \nolimits _{i = 0}^ r (-1)^ i c_1(\mathcal{O}_{P_ X}(1))^ i \cap \pi _ X^*(f^*\alpha _{r - i}) = 0
holds in the chow group of P_ X. By the characterization of Lemma 42.38.2 we conclude. \square
Comments (0)
There are also: