Lemma 42.37.5. Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$, $Y$ be locally of finite type over $S$. Let $\mathcal{E}$ be a finite locally free sheaf of rank $r$ on $Y$. Let $f : X \to Y$ be a flat morphism of relative dimension $r$. Let $\alpha$ be a $k$-cycle on $Y$. Then

$f^*(c_ j(\mathcal{E}) \cap \alpha ) = c_ j(f^*\mathcal{E}) \cap f^*\alpha$

Proof. Write $\alpha _ j = c_ j(\mathcal{E}) \cap \alpha$, so $\alpha _0 = \alpha$. By Lemma 42.37.2 we have

$\sum \nolimits _{i = 0}^ r (-1)^ i c_1(\mathcal{O}_ P(1))^ i \cap \pi ^*(\alpha _{r - i}) = 0$

in the chow group of the projective bundle $(\pi : P \to Y, \mathcal{O}_ P(1))$ associated to $\mathcal{E}$. Consider the fibre product diagram

$\xymatrix{ P_ X = \mathbf{P}(f^*\mathcal{E}) \ar[r]_-{f'} \ar[d]_{\pi _ X} & P \ar[d]^\pi \\ X \ar[r]^ f & Y }$

Note that $\mathcal{O}_{P_ X}(1)$ is the pullback of $\mathcal{O}_ P(1)$. Apply flat pullback $(f')^*$ (Lemma 42.20.2) to the displayed equation above. By Lemmas 42.25.2 and 42.14.3 we see that

$\sum \nolimits _{i = 0}^ r (-1)^ i c_1(\mathcal{O}_{P_ X}(1))^ i \cap \pi _ X^*(f^*\alpha _{r - i}) = 0$

holds in the chow group of $P_ X$. By the characterization of Lemma 42.37.2 we conclude. $\square$

There are also:

• 2 comment(s) on Section 42.37: Intersecting with Chern classes

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).