The Stacks project

Lemma 20.20.2. Let $X$ be an irreducible topological space. Then $H^ p(X, \underline{A}) = 0$ for all $p > 0$ and any abelian group $A$.

Proof. Recall that $\underline{A}$ is the constant sheaf as defined in Sheaves, Definition 6.7.4. It is clear that for any nonempty open $U \subset X$ we have $\underline{A}(U) = A$ as $X$ is irreducible (and hence $U$ is connected). We will show that the higher Čech cohomology groups $\check{H}^ p(\mathcal{U}, \underline{A})$ are zero for any open covering $\mathcal{U} : U = \bigcup _{i\in I} U_ i$ of an open $U \subset X$. Then the lemma will follow from Lemma 20.11.8.

Recall that the value of an abelian sheaf on the empty open set is $0$. Hence we may clearly assume $U_ i \not= \emptyset $ for all $i \in I$. In this case we see that $U_ i \cap U_{i'} \not= \emptyset $ for all $i, i' \in I$. Hence we see that the Čech complex is simply the complex

\[ \prod _{i_0 \in I} A \to \prod _{(i_0, i_1) \in I^2} A \to \prod _{(i_0, i_1, i_2) \in I^3} A \to \ldots \]

We have to see this has trivial higher cohomology groups. We can see this for example because this is the Čech complex for the covering of a $1$-point space and Čech cohomology agrees with cohomology on such a space. (You can also directly verify it by writing an explicit homotopy.) $\square$

Comments (0)

There are also:

  • 2 comment(s) on Section 20.20: Vanishing on Noetherian topological spaces

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02UW. Beware of the difference between the letter 'O' and the digit '0'.