The Stacks project

39.18 Restricting groupoids

Consider a (usual) groupoid $\mathcal{C} = (\text{Ob}, \text{Arrows}, s, t, c)$. Suppose we have a map of sets $g : \text{Ob}' \to \text{Ob}$. Then we can construct a groupoid $\mathcal{C}' = (\text{Ob}', \text{Arrows}', s', t', c')$ by thinking of a morphism between elements $x', y'$ of $\text{Ob}'$ as a morphism in $\mathcal{C}$ between $g(x'), g(y')$. In other words we set

\[ \text{Arrows}' = \text{Ob}' \times _{g, \text{Ob}, t} \text{Arrows} \times _{s, \text{Ob}, g} \text{Ob}'. \]

with obvious choices for $s'$, $t'$, and $c'$. There is a canonical functor $\mathcal{C}' \to \mathcal{C}$ which is fully faithful, but not necessarily essentially surjective. This groupoid $\mathcal{C}'$ endowed with the functor $\mathcal{C}' \to \mathcal{C}$ is called the restriction of the groupoid $\mathcal{C}$ to $\text{Ob}'$.

Lemma 39.18.1. Let $S$ be a scheme. Let $(U, R, s, t, c)$ be a groupoid scheme over $S$. Let $g : U' \to U$ be a morphism of schemes. Consider the following diagram

\[ \xymatrix{ R' \ar[d] \ar[r] \ar@/_3pc/[dd]_{t'} \ar@/^1pc/[rr]^{s'}& R \times _{s, U} U' \ar[r] \ar[d] & U' \ar[d]^ g \\ U' \times _{U, t} R \ar[d] \ar[r] & R \ar[r]^ s \ar[d]_ t & U \\ U' \ar[r]^ g & U } \]

where all the squares are fibre product squares. Then there is a canonical composition law $c' : R' \times _{s', U', t'} R' \to R'$ such that $(U', R', s', t', c')$ is a groupoid scheme over $S$ and such that $U' \to U$, $R' \to R$ defines a morphism $(U', R', s', t', c') \to (U, R, s, t, c)$ of groupoid schemes over $S$. Moreover, for any scheme $T$ over $S$ the functor of groupoids

\[ (U'(T), R'(T), s', t', c') \to (U(T), R(T), s, t, c) \]

is the restriction (see above) of $(U(T), R(T), s, t, c)$ via the map $U'(T) \to U(T)$.

Proof. Omitted. $\square$

Definition 39.18.2. Let $S$ be a scheme. Let $(U, R, s, t, c)$ be a groupoid scheme over $S$. Let $g : U' \to U$ be a morphism of schemes. The morphism of groupoids $(U', R', s', t', c') \to (U, R, s, t, c)$ constructed in Lemma 39.18.1 is called the restriction of $(U, R, s, t, c)$ to $U'$. We sometime use the notation $R' = R|_{U'}$ in this case.

Proof. What we are saying here is that $R'$ of Lemma 39.18.1 is also equal to

\[ R' = (U' \times _ S U')\times _{U \times _ S U} R \longrightarrow U' \times _ S U' \]

In fact this might have been a clearer way to state that lemma. $\square$

Lemma 39.18.4. Let $S$ be a scheme. Let $(U, R, s, t, c)$ be a groupoid scheme over $S$. Let $g : U' \to U$ be a morphism of schemes. Let $(U', R', s', t', c')$ be the restriction of $(U, R, s, t, c)$ via $g$. Let $G$ be the stabilizer of $(U, R, s, t, c)$ and let $G'$ be the stabilizer of $(U', R', s', t', c')$. Then $G'$ is the base change of $G$ by $g$, i.e., there is a canonical identification $G' = U' \times _{g, U} G$.

Proof. Omitted. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02VA. Beware of the difference between the letter 'O' and the digit '0'.